Home Tools
Log in
Cart

SSR240612

Catalog No. T5048   CAS 464930-42-5

SSR240612 is a potent, and orally active specific non-peptide bradykinin B1 receptor antagonist (Kis = 0.48-0.73 and 358-481 nM for B1 and B2 receptors, respectively).

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
SSR240612 Chemical Structure
SSR240612, CAS 464930-42-5
Pack Size Availability Price/USD Quantity
1 mg In stock $ 307.00
5 mg In stock $ 748.00
10 mg In stock $ 1,050.00
25 mg In stock $ 1,570.00
50 mg In stock $ 2,090.00
100 mg In stock $ 2,850.00
1 mL * 10 mM (in DMSO) In stock $ 1,180.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 99.16%
Purity: 98.95%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description SSR240612 is a potent, and orally active specific non-peptide bradykinin B1 receptor antagonist (Kis = 0.48-0.73 and 358-481 nM for B1 and B2 receptors, respectively).
Targets&IC50 B1 Human HEK-B1:0.73 nM (Ki), B2 Human CHO-B2:358 nM (Ki), B1 Human MRC5:0.48 nM (Ki)
In vitro SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM [1]. M. tuberculosis was not susceptible to the concentrations of antagonists tested, which suggests that the minimum inhibitory concentration values are larger than 250 μM for SSR240612 [2].
In vivo SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat [1]. SSR240612 blocked tactile and cold allodynia at 3 h (ID(50)=5.5 and 7.1 mg/kg, respectively) in glucose-fed rats but had no effect in control rats. The antagonist (10 mg/kg) had no effect on plasma glucose and insulin, insulin resistance (HOMA index) and aortic superoxide anion production in glucose-fed rats [3].
Kinase Assay MRC5 human fibroblasts and transfected HEK-293 cells expressing human B1 receptors were routinely grown in Dulbecco's modified Eagle's medium (DMEM) with Glutamax-I supplemented with 10% fetal calf serum and antibiotics. MRC5 were incubated for 4 h in DMEM containing 0.5 μg/ml interleukin-1β (IL-1β) to induce B1 receptor synthesis. Cells were scraped and homogenized for 1 min using a Polytron (setting 8) in 25 mM TES-HCl containing 1 mM 1-10 phenantrolin. Homogenates were centrifuged at 40,000g for 15 min at 4°C, and pellets were resuspended in the same buffer using the Polytron (setting 8) for 1 min. Membranes were pelleted at 40,000g for 10 min at 4°C, resuspended in the same buffer, and conserved at 80°C. [3H]Lys0-des-Arg9-BK binding to cell membranes was performed in binding buffer of the following composition: 137 mM NaCl, 5.4 mM KCl, 1.05 mM MgCl2, 1.8 mM CaCl2, 1.2 mM NaH2PO4, 15.5 mM NaHCO3, 10 mM HEPES, 1 g/l bovine serum albumin (BSA), 140 mg/l bacitracin, and 1 μM captopril, pH 7.4. Membranes were incubated for 30 min at 25°C in 500 μl of binding buffer containing 1 nM [3H]Lys0-des-Arg9-BK for competition curves or 0.1 to 10 nM for saturation isotherms. The reaction was terminated by filtration using a Brandel Harvester onto GF/B Whatman filters previously soaked for 2 h in 0.1% polyethyleneimine. Filters were washed three times with 5 ml of binding buffer, and radioactivity was determined by liquid scintillation spectrometry. Nonspecific binding was determined by the addition of 1 μM of unlabeled Lys0 -des-Arg9 BK [1].
Cell Research [3H]Inositol phosphate1 accumulation was measured in MRC5 fibroblasts labeled with [3H]myoinositol according to the method described by Oury-Donat et al. Cells cultured in 6-well plates were labeled for 48 h with 5 μCi/ml [3H]myoinositol added to the culture medium (DMEM). Cells were then incubated for 4 h in DMEM containing 0.5 μg/ml IL-1β to induce B1 receptor synthesis. Agonist stimulation of inositol phosphate 1 accumulation was performed in DMEM containing 50 mM LiCl and test compounds. Antagonists were added 15 min before 10 nM Lys0-desArg10BK. After 30 min of incubation at 37°C, the medium was discarded, and the reaction was stopped by rapid addition of 1 ml of cold methanol and 1 N HCl (v/v). The cells were scraped, and the suspension was transferred to a glass tube with 1 ml of chloroform and 20 μl of 12 N HCl. The aqueous phase was neutralized by 350 μl of 1 M NaHCO3 and applied to 1 ml of Dowex AG1 × eight columns. [3H]inositol phosphate 1 was eluted with 0.2 M ammonium formate and 0.1 M formic acid. Radioactivity was measured by liquid scintillation spectrometry [1].
Animal Research Groups of eight male albino mice under isoflurane anesthesia received a 20-μl intraplantar injection into the right hind paw of 5 μg of IL-1β in phosphate-buffered saline/0.1% BSA. Forty minutes later (T = 0), mice received, under anesthesia, a 20-μl intraplantar injection in the same paw of des-Arg9-BK (10 μg/paw) in water. SSR240612 or vehicle [5% (v/v) ethanol and 5% (v/v) Tween 80 in water] was administered by oral route at the doses of 1, 3, and 10 mg/kg 1 h before des-Arg9-BK injection and by intraperitoneal route at the doses of 0.1, 0.3, and 1 mg/kg 40 min before des-Arg9-BK injection. Paw volume was measured with a plethysmometer at T =-2 h (initial measurement) and at several times after edema induction (T = 20, 40, 60, and 120 min). Paw edema volume was expressed in milliliters as the difference between the paw volume at each time after edema induction and the initial paw volume. Results for each group are expressed as mean ± S.E.M. of individual paw edema volumes [1].
Molecular Weight 793.41
Formula C42H53ClN4O7S
CAS No. 464930-42-5

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

H2O: Insoluble

DMSO: 100 mg/mL (126 mM)

TargetMolReferences and Literature

1. Gougat J, et al. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther. 2004 May;309(2):661-9. 2. Rodrigues-Junior VS, et al. Effect of the bradykinin 1 receptor antagonist SSR240612 after oral administration in Mycobacterium tuberculosis-infected mice. Tuberculosis (Edinb). 2018 Mar;109:1-7. 3. Dias JP, et al. The kinin B1 receptor antagonist SSR240612 reverses tactile and cold allodynia in an experimental rat model of insulin resistance. Br J Pharmacol. 2007 Sep;152(2):280-7.

Related compound libraries

This product is contained In the following compound libraries:
Anti-Cancer Clinical Compound Library Anti-Cancer Drug Library Bioactive Compound Library Bioactive Compounds Library Max Anti-COVID-19 Compound Library Drug Repurposing Compound Library Inhibitor Library Orally Active Compound Library Clinical Compound Library NO PAINS Compound Library

Related Products

Related compounds with same targets
Safotibant ELN-441958 B-Raf IN 14 Bombinakinin M acetate Anatibant 2HCl Sar-[D-Phe8]-des-Arg9-Bradykinin acetate Bradykinin (2-9) [Des-Arg9]-Bradykinin

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

SSR240612 464930-42-5 GPCR/G Protein Bradykinin Receptor SSR 240612 Inhibitor inhibit SSR-240612 inhibitor

 

TargetMol