Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

CNR1 Protein-VLP, Human, Recombinant (His)

CNR1 Protein-VLP, Human, Recombinant (His)
Resource Download

CNR1 Protein-VLP, Human, Recombinant (His)

Catalog No. TMPH-01035
CNR1 Protein-VLP, Human, Recombinant (His) is expressed in HEK293 mammalian cells with C-10xHis tag. The predicted molecular weight is 54.6 kDa and the accession number is P21554.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
20 μg$53020 days
100 μg$1,06020 days
1 mg$5,63020 days
Bulk & Custom
Add to Cart
Questions
View More

Biological Description

Biological Information
Measured by its binding ability in a functional ELISA. Immobilized Human CNR1 at 10 μg/mL can bind Anti-CNR1 recombinant antibody, the EC 50 is 41.72-63.54 ng/mL.
Description
CNR1 Protein-VLP, Human, Recombinant (His) is expressed in HEK293 mammalian cells with C-10xHis tag. The predicted molecular weight is 54.6 kDa and the accession number is P21554.
Species
Human
Expression System
HEK293 Cells
TagC-10xHis (This tag can be tested only under denaturing conditions)
Accession NumberP21554
Synonyms
Cnr1,Skr6,CB1,CB-R,Cannabinoid receptor 1,Brain-type cannabinoid receptor
Amino Acid
MKSILDGLADTTFRTITTDLLYVGSNDIQYEDIKGDMASKLGYFPQKFPLTSFRGSPFQEKMTAGDNPQLVPADQVNITEFYNKSLSSFKENEENIQCGENFMDIECFMVLNPSQQLAIAVLSLTLGTFTVLENLLVLCVILHSRSLRCRPSYHFIGSLAVADLLGSVIFVYSFIDFHVFHRKDSRNVFLFKLGGVTASFTASVGSLFLTAIDRYISIHRPLAYKRIVTRPKAVVAFCLMWTIAIVIAVLPLLGWNCEKLQSVCSDIFPHIDETYLMFWIGVTSVLLLFIVYAYMYILWKAHSHAVRMIQRGTQKSIIIHTSEDGKVQVTRPDQARMDIRLAKTLVLILVVLIICWGPLLAIMVYDVFGKMNKLIKTVFAFCSMLCLLNSTVNPIIYALRSKDLRHAFRSMFPSCEGTAQPLDNSMGDSDCLHKHANNAASVHRAAESCIKSTVKIAKVTMSVSTDTSAEAL
Construction
1-472 aa
Molecular Weight54.6 kDa (predicted)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing PBS, 6% Trehalose, pH 7.4
Reconstitution
Reconstitute the lyophilized protein in sterile deionized water. The product concentration should not be less than 100 μg/mL. Before opening, centrifuge the tube to collect powder at the bottom. After adding the reconstitution buffer, avoid vortexing or pipetting for mixing.
Stability & Storage
Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice. Solutions are shipping with dry ice.
Research Background
G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP. In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission. In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner. In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone. Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes. In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism. In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism. In response to cannabinoid anandamide, elicits a proinflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion. In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells.; Binds both 2-AG and anandamide.; Only binds 2-AG with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 2 in assays measuring GTP binding to membranes.; Only binds 2-AG with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 3 in assays measuring GTP binding to membranes.

Dose Conversion

You can also refer to dose conversion for different animals. More

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.