Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

HDAC4 Protein, Human, Recombinant (aa 612-1084)

Catalog No. TMPY-03431

HDAC4 (histone deacetylase 4), belongs to class II of the histone deacetylase/AcuC/APhA family. Histone Deacetylases (HDACs) are a group of enzymes closely related to sirtuins. They catalyze the removal of acetyl groups from lysine residues in histones and non-histone proteins, resulting in transcriptional repression. In general, they do not act autonomously but as components of large multiprotein complexes, such as pRb-E2F and mSin3A, that mediate important transcription regulatory pathways. There are three classes of HDACs; classes 1, 2, and 4, which are closely related to Zn2+-dependent enzymes. HDACs are ubiquitously expressed and they can exist in the nucleus or cytosol. Their subcellular localization is affected by protein-protein interactions and by the class to which they belong. HDACs have a role in cell growth arrest, differentiation, and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. HDAC4 possesses histone deacetylase activity and represses transcription when tethered to a promoter. It does not bind DNA directly but through transcription factors MEF2C and MEF2D. HDAC4 seems to interact in a multiprotein complex with RbAp48 and HDAC3.

HDAC4 Protein, Human, Recombinant (aa 612-1084)

HDAC4 Protein, Human, Recombinant (aa 612-1084)

Catalog No. TMPY-03431
HDAC4 (histone deacetylase 4), belongs to class II of the histone deacetylase/AcuC/APhA family. Histone Deacetylases (HDACs) are a group of enzymes closely related to sirtuins. They catalyze the removal of acetyl groups from lysine residues in histones and non-histone proteins, resulting in transcriptional repression. In general, they do not act autonomously but as components of large multiprotein complexes, such as pRb-E2F and mSin3A, that mediate important transcription regulatory pathways. There are three classes of HDACs; classes 1, 2, and 4, which are closely related to Zn2+-dependent enzymes. HDACs are ubiquitously expressed and they can exist in the nucleus or cytosol. Their subcellular localization is affected by protein-protein interactions and by the class to which they belong. HDACs have a role in cell growth arrest, differentiation, and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. HDAC4 possesses histone deacetylase activity and represses transcription when tethered to a promoter. It does not bind DNA directly but through transcription factors MEF2C and MEF2D. HDAC4 seems to interact in a multiprotein complex with RbAp48 and HDAC3.
Pack SizePriceAvailabilityQuantity
100 μg$700In Stock
Bulk & Custom
Add to Cart
Questions
View More
Select Batch
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
HDAC4 (histone deacetylase 4), belongs to class II of the histone deacetylase/AcuC/APhA family. Histone Deacetylases (HDACs) are a group of enzymes closely related to sirtuins. They catalyze the removal of acetyl groups from lysine residues in histones and non-histone proteins, resulting in transcriptional repression. In general, they do not act autonomously but as components of large multiprotein complexes, such as pRb-E2F and mSin3A, that mediate important transcription regulatory pathways. There are three classes of HDACs; classes 1, 2, and 4, which are closely related to Zn2+-dependent enzymes. HDACs are ubiquitously expressed and they can exist in the nucleus or cytosol. Their subcellular localization is affected by protein-protein interactions and by the class to which they belong. HDACs have a role in cell growth arrest, differentiation, and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. HDAC4 possesses histone deacetylase activity and represses transcription when tethered to a promoter. It does not bind DNA directly but through transcription factors MEF2C and MEF2D. HDAC4 seems to interact in a multiprotein complex with RbAp48 and HDAC3.
Species
Human
Expression System
Baculovirus Insect Cells
TagTag Free
Accession NumberP56524-1
Synonyms
histone deacetylase 4,HDAC-A,HDACA,HDAC-4,HD4,HA6116,BDMR,AHO3
Construction
A DNA sequence encoding the human HDAC4 (NP_006028.2)(Met612-Leu1084) was expressed and purified with two additional amino acids (Gly & Pro ) at the N-terminus. Predicted N terminal: Met
Protein Purity
> 90 % as determined by SDS-PAGE
Molecular Weight50.9 kDa (predicted); 51 kDa (reducing condition, due to glycosylation)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 20 mM Tris, 500 mM NaCl, pH 7.4, 10%gly. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
HDAC4 (histone deacetylase 4), belongs to class II of the histone deacetylase/AcuC/APhA family. Histone Deacetylases (HDACs) are a group of enzymes closely related to sirtuins. They catalyze the removal of acetyl groups from lysine residues in histones and non-histone proteins, resulting in transcriptional repression. In general, they do not act autonomously but as components of large multiprotein complexes, such as pRb-E2F and mSin3A, that mediate important transcription regulatory pathways. There are three classes of HDACs; classes 1, 2, and 4, which are closely related to Zn2+-dependent enzymes. HDACs are ubiquitously expressed and they can exist in the nucleus or cytosol. Their subcellular localization is affected by protein-protein interactions and by the class to which they belong. HDACs have a role in cell growth arrest, differentiation, and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. HDAC4 possesses histone deacetylase activity and represses transcription when tethered to a promoter. It does not bind DNA directly but through transcription factors MEF2C and MEF2D. HDAC4 seems to interact in a multiprotein complex with RbAp48 and HDAC3.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords