Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

JNK2 Protein, Human, Recombinant (His)

JNK2 Protein, Human, Recombinant (His)
Resource Download

JNK2 Protein, Human, Recombinant (His)

Catalog No. TMPY-04550
Mitogen-activated protein kinase 9 (MAPK9), also well known as c-Jun N-terminal kinase (JNK2), is a member of the MAP kinase subfamily belonging to the protein kinase superfamily. MAPK9 responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating some transcription factors, such as c-Jun and ATF2. The crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. It suggests that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners. JNK2 deficiency leads to reduced c-Jun degradation, thereby augmenting c-Jun levels and cellular proliferation, and suggests that JNK2 is a negative regulator of cellular proliferation in multiple cell types. JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms. JNK2 blocks the ubiquitination of tumor suppressor p53, and thus increases the stability of p53 in nonstressed cells. JNK2 negatively regulates antigen-specific CD8+ T cell expansion and effector function, and thus selectively blocking JNK2 in CD8+ T cells may potentially enhance the anti-tumor immune response. Lack of JNK2 expression was associated with higher tumor aneuploidy and reduced DNA damage response. Additionally, the JNK2 protein could be a novel therapeutic target in dry eye disease and may provide a novel target for the prevention of vascular disease and atherosclerosis.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
50 μg$4987-10 days
500 μg$3,2707-10 days
Bulk & Custom
Add to Cart
Questions
View More

Biological Description

Biological Information
No Kinase Activity
Description
Mitogen-activated protein kinase 9 (MAPK9), also well known as c-Jun N-terminal kinase (JNK2), is a member of the MAP kinase subfamily belonging to the protein kinase superfamily. MAPK9 responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating some transcription factors, such as c-Jun and ATF2. The crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. It suggests that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners. JNK2 deficiency leads to reduced c-Jun degradation, thereby augmenting c-Jun levels and cellular proliferation, and suggests that JNK2 is a negative regulator of cellular proliferation in multiple cell types. JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms. JNK2 blocks the ubiquitination of tumor suppressor p53, and thus increases the stability of p53 in nonstressed cells. JNK2 negatively regulates antigen-specific CD8+ T cell expansion and effector function, and thus selectively blocking JNK2 in CD8+ T cells may potentially enhance the anti-tumor immune response. Lack of JNK2 expression was associated with higher tumor aneuploidy and reduced DNA damage response. Additionally, the JNK2 protein could be a novel therapeutic target in dry eye disease and may provide a novel target for the prevention of vascular disease and atherosclerosis.
Species
Human
Expression System
Baculovirus Insect Cells
TagC-His
Accession NumberP45984-1
Synonyms
JNK2α,SAPK1a,PRKM9,JNK2β,JNK2,SAPK,JNK2BETA,mitogen-activated protein kinase 9,JNK2ALPHA,JNK-55,p54aSAPK,JNK2B,JNK2A,p54a
Construction
The full length of Human MAPK9 (NP_002743.3) (Met 1-Arg 424) was fused with a polyhistidine tag at the C-terminus.
Protein Purity
> 90 % as determined by SDS-PAGE
Molecular Weight49.5 kDa (predicted)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, 100 mM NaCl, pH 8.0, 10% glycerol, 0.5 mM EDTA, 0.5 mM PMSF. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
Mitogen-activated protein kinase 9 (MAPK9), also well known as c-Jun N-terminal kinase (JNK2), is a member of the MAP kinase subfamily belonging to the protein kinase superfamily. MAPK9 responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating some transcription factors, such as c-Jun and ATF2. The crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. It suggests that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners. JNK2 deficiency leads to reduced c-Jun degradation, thereby augmenting c-Jun levels and cellular proliferation, and suggests that JNK2 is a negative regulator of cellular proliferation in multiple cell types. JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms. JNK2 blocks the ubiquitination of tumor suppressor p53, and thus increases the stability of p53 in nonstressed cells. JNK2 negatively regulates antigen-specific CD8+ T cell expansion and effector function, and thus selectively blocking JNK2 in CD8+ T cells may potentially enhance the anti-tumor immune response. Lack of JNK2 expression was associated with higher tumor aneuploidy and reduced DNA damage response. Additionally, the JNK2 protein could be a novel therapeutic target in dry eye disease and may provide a novel target for the prevention of vascular disease and atherosclerosis.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords