Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

MST4 Protein, Human, Recombinant (GST)

Catalog No. TMPY-04374

MST4, also known as mammalian STE2-like protein kinase 4, is a novel member of the germinal center kinase subfamily of human Ste2-like kinases and is closely related to MST3. The 416 amino acid full-length MST4 contains a C-terminal regulatory domain and an N-terminal kinase domain, both of which are required for full activation of the kinase. MST4 is highly expressed in the placenta, thymus, and peripheral blood leukocytes. MST4 specifically activates ERK but not JNK or p38 MAPK in transiently transfected cells or stable cell lines, and thus is biologically active in the activation of the MEK/ERK pathway mediating cell growth and transformation. Further, MST4 kinase activity is stimulated significantly by epidermal growth factor receptor (EGFR) ligands, which are known to promote the growth of certain cancer cells. Accordingly, MST4 has a potential role in signal transduction pathways involved in cancer progression. Three alternatively spliced isoforms of MST4 have been isolated, and isoform 3 lacks an exon encoding kinase domain and may function as a dominant-negative regulator of the MST4 kinase.

MST4 Protein, Human, Recombinant (GST)

MST4 Protein, Human, Recombinant (GST)

Catalog No. TMPY-04374
MST4, also known as mammalian STE2-like protein kinase 4, is a novel member of the germinal center kinase subfamily of human Ste2-like kinases and is closely related to MST3. The 416 amino acid full-length MST4 contains a C-terminal regulatory domain and an N-terminal kinase domain, both of which are required for full activation of the kinase. MST4 is highly expressed in the placenta, thymus, and peripheral blood leukocytes. MST4 specifically activates ERK but not JNK or p38 MAPK in transiently transfected cells or stable cell lines, and thus is biologically active in the activation of the MEK/ERK pathway mediating cell growth and transformation. Further, MST4 kinase activity is stimulated significantly by epidermal growth factor receptor (EGFR) ligands, which are known to promote the growth of certain cancer cells. Accordingly, MST4 has a potential role in signal transduction pathways involved in cancer progression. Three alternatively spliced isoforms of MST4 have been isolated, and isoform 3 lacks an exon encoding kinase domain and may function as a dominant-negative regulator of the MST4 kinase.
Pack SizePriceAvailabilityQuantity
50 μg$4987-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
The specific activity was determined to be 15 nmol/min/mg using MBP as substrate.
Description
MST4, also known as mammalian STE2-like protein kinase 4, is a novel member of the germinal center kinase subfamily of human Ste2-like kinases and is closely related to MST3. The 416 amino acid full-length MST4 contains a C-terminal regulatory domain and an N-terminal kinase domain, both of which are required for full activation of the kinase. MST4 is highly expressed in the placenta, thymus, and peripheral blood leukocytes. MST4 specifically activates ERK but not JNK or p38 MAPK in transiently transfected cells or stable cell lines, and thus is biologically active in the activation of the MEK/ERK pathway mediating cell growth and transformation. Further, MST4 kinase activity is stimulated significantly by epidermal growth factor receptor (EGFR) ligands, which are known to promote the growth of certain cancer cells. Accordingly, MST4 has a potential role in signal transduction pathways involved in cancer progression. Three alternatively spliced isoforms of MST4 have been isolated, and isoform 3 lacks an exon encoding kinase domain and may function as a dominant-negative regulator of the MST4 kinase.
Species
Human
Expression System
Baculovirus Insect Cells
TagN-GST
Accession NumberQ9P289-1
Synonyms
serine/threonine protein kinase 26,MST4,MASK
Construction
A DNA sequence encoding the human MST4 isoform 1 (NP_057626.2) (Met 1-Pro 416) was expressed with the fused GST tag at N-terminus. Predicted N terminal: Met
Protein Purity
> 95 % as determined by SDS-PAGE
Molecular Weight73 kDa (predicted); 65 kDa (reducing conditions)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationSupplied as sterile 50 mM Tris, 100 mM NaCl, pH 8.0, 25% glycerol, 0.6 mM GSH, 0.5 mM PMSF, 0.5 mM EDTA, 2 mM DTT.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store the product under sterile conditions at -20°C to -80°C. Samples are stable for up to 12 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingShipping with blue ice.
Research Background
MST4, also known as mammalian STE2-like protein kinase 4, is a novel member of the germinal center kinase subfamily of human Ste2-like kinases and is closely related to MST3. The 416 amino acid full-length MST4 contains a C-terminal regulatory domain and an N-terminal kinase domain, both of which are required for full activation of the kinase. MST4 is highly expressed in the placenta, thymus, and peripheral blood leukocytes. MST4 specifically activates ERK but not JNK or p38 MAPK in transiently transfected cells or stable cell lines, and thus is biologically active in the activation of the MEK/ERK pathway mediating cell growth and transformation. Further, MST4 kinase activity is stimulated significantly by epidermal growth factor receptor (EGFR) ligands, which are known to promote the growth of certain cancer cells. Accordingly, MST4 has a potential role in signal transduction pathways involved in cancer progression. Three alternatively spliced isoforms of MST4 have been isolated, and isoform 3 lacks an exon encoding kinase domain and may function as a dominant-negative regulator of the MST4 kinase.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords