Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

SARS-CoV-2 NSP1 Protein (His)

Catalog No. TMPJ-01425

The Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV) is an enveloped, positive-stranded RNA viruses that can cause a severe respiratory disease. Its genome consists of a ∼30 kb linear, non-segmented, capped, polycistronic, polyadenylated RNA molecule, the first two-third of which is directly translated into two large polyproteins. These two polypeptides are processed into 16 non-structural proteins (nsps), forming the replicase complex, which is active in the cytoplasm in close association with cellular membranes. Nsp1 was proved to be able to suppress host gene expression by promoting host mRNA degradation and was involved in cellular chemokine deregulation. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses.

SARS-CoV-2 NSP1 Protein (His)

SARS-CoV-2 NSP1 Protein (His)

Catalog No. TMPJ-01425
The Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV) is an enveloped, positive-stranded RNA viruses that can cause a severe respiratory disease. Its genome consists of a ∼30 kb linear, non-segmented, capped, polycistronic, polyadenylated RNA molecule, the first two-third of which is directly translated into two large polyproteins. These two polypeptides are processed into 16 non-structural proteins (nsps), forming the replicase complex, which is active in the cytoplasm in close association with cellular membranes. Nsp1 was proved to be able to suppress host gene expression by promoting host mRNA degradation and was involved in cellular chemokine deregulation. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses.
Pack SizePriceAvailabilityQuantity
10 μg$1547-10 days
50 μg$4657-10 days
500 μg$2,4807-10 days
1 mg$3,7207-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity has not been tested. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
The Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV) is an enveloped, positive-stranded RNA viruses that can cause a severe respiratory disease. Its genome consists of a ∼30 kb linear, non-segmented, capped, polycistronic, polyadenylated RNA molecule, the first two-third of which is directly translated into two large polyproteins. These two polypeptides are processed into 16 non-structural proteins (nsps), forming the replicase complex, which is active in the cytoplasm in close association with cellular membranes. Nsp1 was proved to be able to suppress host gene expression by promoting host mRNA degradation and was involved in cellular chemokine deregulation. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses.
Species
SARS-CoV-2
Expression System
E. coli
TagC-6xHis
Accession NumberYP_009725297.1
Synonyms
SARS-CoV 2 nsp1,SARS-CoV 2 Leader protein
Amino Acid
Met1-Gly180
Construction
Met1-Gly180
Protein Purity
Greater than 85% as determined by reducing SDS-PAGE. (QC verified)
Molecular Weight25 KDa (reducing condition)
FormulationSupplied as a 0.2 μm filtered solution of 20 mM Tris-HCl, 150 mM NaCl, 10% Glycerol, pH 8.5.
Stability & Storage
Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingShipping with blue ice.
Research Background
The Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV) is an enveloped, positive-stranded RNA viruses that can cause a severe respiratory disease. Its genome consists of a ∼30 kb linear, non-segmented, capped, polycistronic, polyadenylated RNA molecule, the first two-third of which is directly translated into two large polyproteins. These two polypeptides are processed into 16 non-structural proteins (nsps), forming the replicase complex, which is active in the cytoplasm in close association with cellular membranes. Nsp1 was proved to be able to suppress host gene expression by promoting host mRNA degradation and was involved in cellular chemokine deregulation. This virus evades the host innate immune response in part through the expression of its non-structural protein (nsp) 1, which inhibits both host gene expression and virus- and interferon (IFN)-dependent signaling. Thus, nsp1 is a promising target for drugs, as inhibition of nsp1 would make SARS-CoV more susceptible to the host antiviral defenses.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.