Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

SOS1-Cat Protein, Human, Recombinant (His)

Catalog No. TMPU-00002

Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition. Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common. characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.

SOS1-Cat Protein, Human, Recombinant (His)

SOS1-Cat Protein, Human, Recombinant (His)

Catalog No. TMPU-00002
Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition. Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common. characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.
Pack SizePriceAvailabilityQuantity
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Based on Homogeneous Time-Resolved Fluorescence (HTRF), a system was established for the interaction between KRAS-G12S and its partner protein SOS1. The positive compound, SOS1 inhibitor BI3406, showed an inhibitory activity (IC50) of around 18 nM, in line with activities reported in scientific literature.
Description
Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition. Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common. characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.
Species
Human
Expression System
E. coli
TagN-6xHis
Accession NumberQ07889
Synonyms
SOS-1,Son of sevenless homolog 1
Amino Acid
QEEKEEQMRLPSADVYRFAEPDSEENIIFEENMQPKAGIPIIKAGTVIKLIERLTYHMYADPNFVRTFLTTYRSFCKPQELLSLIIERFEIPEPEPTEADRIAIENGDQPLSAELKRFRKEYIQPVQLRVLNVCRHWVEHHFYDFERDAYLLQRMEEFIGTVRGKAMKKWVESITKIIQRKKIARDNGPGHNITFQSSPPTVEWHISRPGHIETFDLLTLHPIEIARQLTLLESDLYRAVQPSELVGSVWTKEDKEINSPNLLKMIRHTTNLTLWFEKCIVETENLEERVAVVSRIIEILQVFQELNNFNGVLEVVSAMNSSPVYRLDHTFEQIPSRQKKILEEAHELSEDHYKKYLAKLRSINPPCVPFFGIYLTNILKTEEGNPEVLKRHGKELINFSKRRKVAEITGEIQQYQNQPYCLRVESDIKRFFENLNPMGNSMEKEFTDYLFNKSLEIEPRNPKPLPRFPKKYSYPLKSPGVRPSNPRPGT
Construction
A DNA sequence encoding the Human SOS1 ((uniprot# Q07889) (Gln560-Thr1049) was expressed with a polyhistidine tag at the N-terminus
Protein Purity
>90% as determined by SDS-PAGE.
FormulationSupplied as a 0.2 μm filtered solution of 25 mM Tris-HCl (PH=7.5), 100 mM NaCl, 1 mM DTT
Stability & Storage
It is recommended to store the product under sterile conditions at -20°C to -80°C. Samples are stable for up to 12 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingShipping with blue ice.
Research Background
Defects in SOS1 are the cause of gingival fibromatosis 1 (GGF1) [MIM:135300]; also known as GINGF1. Gingival fibromatosis is a rare overgrowth condition. Defects in SOS1 are the cause of Noonan syndrome type 4 (NS4) [MIM:610733]. NS4 is an autosomal dominant disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS4 is associated with juvenile myelomonocytic leukemia (JMML). SOS1 mutations engender a high prevalence of pulmonary valve disease; atrial septal defects are less common. characterized by a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of maxillary and mandibular keratinized gingiva. GGF1 is usually transmitted as an autosomal dominant trait, although sporadic cases are common.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords