Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Acetylcholinesterase Protein, Mouse, Recombinant (His)

Acetylcholinesterase Protein, Mouse, Recombinant (His)
Resource Download

Acetylcholinesterase Protein, Mouse, Recombinant (His)

Catalog No. TMPY-01742
Acetylcholinesterase, also known as ACHE, is an enzyme that degrades (through its hydrolytic activity) the neurotransmitter acetylcholine, producing choline and an acetate group. Acetylcholinesterase plays a crucial role in nerve impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. It is an externally oriented membrane-bound enzyme and its main physiological role is termination of chemical transmission at cholinergic synapses and secretory organs by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE plays important roles in the cholinergic system, and its dysregulation is involved in a variety of human diseases. ACHE was significantly down-regulated in the cancerous tissues of 69.2% of hepatocellular carcinoma (HCC) patients, and the low ACHE expression in HCC was correlated with tumor aggressiveness, an elevated risk of postoperative recurrence, and a low survival rate. Both the recombinant ACHE protein and the enhanced expression of ACHE significantly inhibited HCC cell growth in vitro and tumorigenicity in vivo. ACHE as a tumor growth suppressor in regulating cell proliferation, the relevant signaling pathways, and the drug sensitivity of HCC cells. Thus, ACHE is a promising independent prognostic predictor for HCC recurrence and the survival of HCC patients. ACHE is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
20 μg$3987-10 days
Bulk & Custom
Add to Cart
Questions
View More

Biological Description

Biological Information
Measured by its ability to cleave Acetylthiocholine. The specific activity is > 250 nmols/min/μg.
Description
Acetylcholinesterase, also known as ACHE, is an enzyme that degrades (through its hydrolytic activity) the neurotransmitter acetylcholine, producing choline and an acetate group. Acetylcholinesterase plays a crucial role in nerve impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. It is an externally oriented membrane-bound enzyme and its main physiological role is termination of chemical transmission at cholinergic synapses and secretory organs by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE plays important roles in the cholinergic system, and its dysregulation is involved in a variety of human diseases. ACHE was significantly down-regulated in the cancerous tissues of 69.2% of hepatocellular carcinoma (HCC) patients, and the low ACHE expression in HCC was correlated with tumor aggressiveness, an elevated risk of postoperative recurrence, and a low survival rate. Both the recombinant ACHE protein and the enhanced expression of ACHE significantly inhibited HCC cell growth in vitro and tumorigenicity in vivo. ACHE as a tumor growth suppressor in regulating cell proliferation, the relevant signaling pathways, and the drug sensitivity of HCC cells. Thus, ACHE is a promising independent prognostic predictor for HCC recurrence and the survival of HCC patients. ACHE is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates.
Species
Mouse
Expression System
HEK293 Cells
TagC-His
Accession NumberP21836-1
Synonyms
Acre,Chrne,acetylcholinesterase (Yt blood group)
Construction
The Mouse ACHE (NP_033729.1) (Met 1-Leu 614) was expressed, with a polyhistidine tag at the C-terminus.
Protein Purity
> 95 % as determined by SDS-PAGE
Molecular Weight66.2 kDa (predicted)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing PBS, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
Acetylcholinesterase, also known as ACHE, is an enzyme that degrades (through its hydrolytic activity) the neurotransmitter acetylcholine, producing choline and an acetate group. Acetylcholinesterase plays a crucial role in nerve impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. It is an externally oriented membrane-bound enzyme and its main physiological role is termination of chemical transmission at cholinergic synapses and secretory organs by rapid hydrolysis of the neurotransmitter acetylcholine (ACh). ACHE plays important roles in the cholinergic system, and its dysregulation is involved in a variety of human diseases. ACHE was significantly down-regulated in the cancerous tissues of 69.2% of hepatocellular carcinoma (HCC) patients, and the low ACHE expression in HCC was correlated with tumor aggressiveness, an elevated risk of postoperative recurrence, and a low survival rate. Both the recombinant ACHE protein and the enhanced expression of ACHE significantly inhibited HCC cell growth in vitro and tumorigenicity in vivo. ACHE as a tumor growth suppressor in regulating cell proliferation, the relevant signaling pathways, and the drug sensitivity of HCC cells. Thus, ACHE is a promising independent prognostic predictor for HCC recurrence and the survival of HCC patients. ACHE is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates.

Dose Conversion

You can also refer to dose conversion for different animals. More

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords