- Remove All
- Your shopping cart is currently empty
ATP5D is a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase consists of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). ATP5D gene encodes the delta subunit of the catalytic core.
Pack Size | Price | Availability | Quantity |
---|---|---|---|
100 μg | $700 | 7-10 days |
Biological Activity | Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
Description | ATP5D is a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase consists of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). ATP5D gene encodes the delta subunit of the catalytic core. |
Species | Human |
Expression System | E. coli |
Tag | N-His |
Accession Number | P30049 |
Synonyms | ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit,ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit |
Construction | A DNA sequence encoding the human ATP5D (P30049) (Ala23-Glu168) was expressed with a polyhistidine tag at the N-terminus. Predicted N terminal: His |
Protein Purity | > 85 % as determined by SDS-PAGE |
Molecular Weight | 16.9 kDa (predicted); 17 kDa (reducing conditions) |
Endotoxin | Please contact us for more information. |
Formulation | Lyophilized from a solution filtered through a 0.22 μm filter, containing PBS, 10% Glycerol, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization. |
Reconstitution | A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information. |
Stability & Storage | It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
Shipping | In general, Lyophilized powders are shipping with blue ice. |
Research Background | ATP5D is a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase consists of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). ATP5D gene encodes the delta subunit of the catalytic core. |
Copyright © 2015-2024 TargetMol Chemicals Inc. All Rights Reserved.