Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

DNMT2 Protein, Human, Recombinant (GST)

Catalog No. TMPY-01306

DNMT2, also known as tRNA (cytosine-5-)-methyltransferase, DNA methyltransferase homolog HsaIIP, and TRDMT1, is a member of the DNA methyltransferase family of enzymes. DNMT2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases. It contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide, and its structure is very similar to prokaryotic DNA methyltransferases. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif. However, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought.

DNMT2 Protein, Human, Recombinant (GST)

DNMT2 Protein, Human, Recombinant (GST)

Catalog No. TMPY-01306
DNMT2, also known as tRNA (cytosine-5-)-methyltransferase, DNA methyltransferase homolog HsaIIP, and TRDMT1, is a member of the DNA methyltransferase family of enzymes. DNMT2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases. It contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide, and its structure is very similar to prokaryotic DNA methyltransferases. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif. However, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought.
Pack SizePriceAvailabilityQuantity
100 μg$7007-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
DNMT2, also known as tRNA (cytosine-5-)-methyltransferase, DNA methyltransferase homolog HsaIIP, and TRDMT1, is a member of the DNA methyltransferase family of enzymes. DNMT2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases. It contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide, and its structure is very similar to prokaryotic DNA methyltransferases. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif. However, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought.
Species
Human
Expression System
Baculovirus Insect Cells
TagN-GST
Accession NumberO14717-1
Synonyms
tRNA aspartic acid methyltransferase 1,RNMT1,PUMET,MHSAIIP,DNMT2,DMNT2
Construction
A DNA sequence encoding the human TRDMT1 isoform a (NP_004403.1) (Met 1-Glu 391) was fused with the GST tag at the N-terminus. Predicted N terminal: Met
Protein Purity
> 94 % as determined by SDS-PAGE
Molecular Weight71 kDa (predicted); 60 kDa (reducing conditions)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, 100 mM NaCl, 0.5 mM GSH, 0.5 mM PMSF, pH 8.0.Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
DNMT2, also known as tRNA (cytosine-5-)-methyltransferase, DNA methyltransferase homolog HsaIIP, and TRDMT1, is a member of the DNA methyltransferase family of enzymes. DNMT2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases. It contains all 10 sequence motifs that are conserved among m(5)C MTases, including the consensus S:-adenosyl-L-methionine-binding motifs and the active site ProCys dipeptide, and its structure is very similar to prokaryotic DNA methyltransferases. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif. However, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords