Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

NQO1 Protein, Human, Recombinant (His)

Catalog No. TMPY-03407

NQO1 gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. NQO1 forms homodimers and reduces quinones to hydroquinones. NQO1's enzymatic activity prevents the one-electron reduction of quinones that results in the production of radical species. Mutations in the NQO1 gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of NQO1 has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized. Recent pharmacological research suggests the feasibility of genotype-directed redox chemotherapeutic intervention targeting NQO1 breast cancer, a common missense genotype encoding a functionally impaired NQO1 protein.

NQO1 Protein, Human, Recombinant (His)

NQO1 Protein, Human, Recombinant (His)

Catalog No. TMPY-03407
NQO1 gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. NQO1 forms homodimers and reduces quinones to hydroquinones. NQO1's enzymatic activity prevents the one-electron reduction of quinones that results in the production of radical species. Mutations in the NQO1 gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of NQO1 has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized. Recent pharmacological research suggests the feasibility of genotype-directed redox chemotherapeutic intervention targeting NQO1 breast cancer, a common missense genotype encoding a functionally impaired NQO1 protein.
Pack SizePriceAvailabilityQuantity
50 μg$386In Stock
Bulk & Custom
Add to Cart
Questions
View More
Select Batch
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
NQO1 gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. NQO1 forms homodimers and reduces quinones to hydroquinones. NQO1's enzymatic activity prevents the one-electron reduction of quinones that results in the production of radical species. Mutations in the NQO1 gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of NQO1 has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized. Recent pharmacological research suggests the feasibility of genotype-directed redox chemotherapeutic intervention targeting NQO1 breast cancer, a common missense genotype encoding a functionally impaired NQO1 protein.
Species
Human
Expression System
E. coli
TagN-His
Accession NumberP15559-1
Synonyms
QR1,NMORI,NMOR1,NAD(P)H dehydrogenase, quinone 1,DTD,DIA4,DHQU
Construction
A DNA sequence encoding the mature form of human NQO1 (P15559-1) (Met1-Lys274) was expressed with a polyhistide tag at the N-terminus. Predicted N terminal: His
Protein Purity
> 90 % as determined by SDS-PAGE
NQO1 Protein, Human, Recombinant (His)
Molecular Weight33 kDa (predicted); 33 kDa (reducing conditions)
EndotoxinPlease contact us for more information.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing PBS, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
NQO1 gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. NQO1 forms homodimers and reduces quinones to hydroquinones. NQO1's enzymatic activity prevents the one-electron reduction of quinones that results in the production of radical species. Mutations in the NQO1 gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of NQO1 has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized. Recent pharmacological research suggests the feasibility of genotype-directed redox chemotherapeutic intervention targeting NQO1 breast cancer, a common missense genotype encoding a functionally impaired NQO1 protein.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords