Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

p53R2 Protein, Human, Recombinant (His)

Catalog No. TMPY-02527

Ribonucleoside reductase subunit M2B, also known as RRM2B or p53R2, is an enzyme belonging to the iron-dependent ribonucleotide reductase (RNR) enzyme family which is essential for DNA synthesis. Ribonucleotide reductase (RNR) is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides and plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. RRM2B is a phosphorylated protein. It is hypothesized that RRM2B activity can be regulated at the posttranslational level in response to DNA damage. RRM2B has previously been shown to be essential for the maintenance of mtDNA copy number and its candidacy for tumor suppression has been evaluated in several mutational analyses of different cancer types. However, the contribution of RRM2B to the DNA damage response has been questioned because its transcriptional induction upon DNA damage is not rapid enough for prompt DNA repair. Instead, ATM-mediated phosphorylation has been suggested to regulate the DNA repair activity of RRM2B posttranslationally. Besides, a defect in RRM2B can induce a mild muscle disease of adult onset through disturbance of mitochondrial homeostasis but that this defect does not appear to be oncogenic.

p53R2 Protein, Human, Recombinant (His)

p53R2 Protein, Human, Recombinant (His)

Catalog No. TMPY-02527
Ribonucleoside reductase subunit M2B, also known as RRM2B or p53R2, is an enzyme belonging to the iron-dependent ribonucleotide reductase (RNR) enzyme family which is essential for DNA synthesis. Ribonucleotide reductase (RNR) is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides and plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. RRM2B is a phosphorylated protein. It is hypothesized that RRM2B activity can be regulated at the posttranslational level in response to DNA damage. RRM2B has previously been shown to be essential for the maintenance of mtDNA copy number and its candidacy for tumor suppression has been evaluated in several mutational analyses of different cancer types. However, the contribution of RRM2B to the DNA damage response has been questioned because its transcriptional induction upon DNA damage is not rapid enough for prompt DNA repair. Instead, ATM-mediated phosphorylation has been suggested to regulate the DNA repair activity of RRM2B posttranslationally. Besides, a defect in RRM2B can induce a mild muscle disease of adult onset through disturbance of mitochondrial homeostasis but that this defect does not appear to be oncogenic.
Pack SizePriceAvailabilityQuantity
100 μg$7007-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
Ribonucleoside reductase subunit M2B, also known as RRM2B or p53R2, is an enzyme belonging to the iron-dependent ribonucleotide reductase (RNR) enzyme family which is essential for DNA synthesis. Ribonucleotide reductase (RNR) is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides and plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. RRM2B is a phosphorylated protein. It is hypothesized that RRM2B activity can be regulated at the posttranslational level in response to DNA damage. RRM2B has previously been shown to be essential for the maintenance of mtDNA copy number and its candidacy for tumor suppression has been evaluated in several mutational analyses of different cancer types. However, the contribution of RRM2B to the DNA damage response has been questioned because its transcriptional induction upon DNA damage is not rapid enough for prompt DNA repair. Instead, ATM-mediated phosphorylation has been suggested to regulate the DNA repair activity of RRM2B posttranslationally. Besides, a defect in RRM2B can induce a mild muscle disease of adult onset through disturbance of mitochondrial homeostasis but that this defect does not appear to be oncogenic.
Species
Human
Expression System
E. coli
TagN-His
Accession NumberQ7LG56-1
Synonyms
ribonucleotide reductase M2 B (TP53 inducible),P53R2,MTDPS8B,MTDPS8A
Construction
A DNA sequence encoding the human RRM2B (Q7LG56-1) (Met 1-Phe 351) was expressed, with a polyhistide tag at the N-terminus. Predicted N terminal: Met
Protein Purity
> 92 % as determined by SDS-PAGE
Molecular Weight42.6 kDa (predicted); 43 kDa (reducing conditions)
EndotoxinPlease contact us for more information.
FormulationSupplied as sterile PBS, 30% glycerol, pH 8.5.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store the product under sterile conditions at -20°C to -80°C. Samples are stable for up to 12 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingShipping with blue ice.
Research Background
Ribonucleoside reductase subunit M2B, also known as RRM2B or p53R2, is an enzyme belonging to the iron-dependent ribonucleotide reductase (RNR) enzyme family which is essential for DNA synthesis. Ribonucleotide reductase (RNR) is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides and plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. RRM2B is a phosphorylated protein. It is hypothesized that RRM2B activity can be regulated at the posttranslational level in response to DNA damage. RRM2B has previously been shown to be essential for the maintenance of mtDNA copy number and its candidacy for tumor suppression has been evaluated in several mutational analyses of different cancer types. However, the contribution of RRM2B to the DNA damage response has been questioned because its transcriptional induction upon DNA damage is not rapid enough for prompt DNA repair. Instead, ATM-mediated phosphorylation has been suggested to regulate the DNA repair activity of RRM2B posttranslationally. Besides, a defect in RRM2B can induce a mild muscle disease of adult onset through disturbance of mitochondrial homeostasis but that this defect does not appear to be oncogenic.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords