Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

USP5 Protein, Human, Recombinant (His)

Catalog No. TMPY-02211

Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.

USP5 Protein, Human, Recombinant (His)

USP5 Protein, Human, Recombinant (His)

Catalog No. TMPY-02211
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.
Pack SizePriceAvailabilityQuantity
100 μg$4987-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.
Species
Human
Expression System
Baculovirus Insect Cells
TagC-His
Accession NumberP45974-2
Synonyms
ubiquitin specific peptidase 5 (isopeptidase T),ISOT
Construction
A DNA sequence encoding the human USP5 isoform short (P45974-2) (Met 1-Ser 835) was fused with a polyhistidine tag at the C-terminus. Predicted N terminal: Met 1
Protein Purity
> 90 % as determined by SDS-PAGE
Molecular Weight94.7 kDa (predicted); 100 kDa (reducing conditions)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, 100 mM NaCl, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
Ubiquitin carboxyl-terminal hydrolase 5, also known as Deubiquitinating enzyme 5, Isopeptidase T, Ubiquitin thiolesterase 5, Ubiquitin-specific-processing protease 5, ISOT and USP5, is a member of the peptidase C19 family. USP5 contains 2 UBA domains and one UBP-type zinc finger. The UBP-type zinc finger domain interacts selectively with an unmodified C-terminus of the proximal ubiquitin. Both UBA domains are involved in polyubiquitin recognition. The UBP-type zinc finger domain crystallizes as a dimer linked by a disulfide bond between the Cys-195 residues of both molecules, but there is no evidence that the full-length USP5 exists as a dimer. USP5 cleaves linear and branched multiubiquitin polymers with a marked preference for branched polymers. USP5 is involved in unanchored 'Lys-48'-linked polyubiquitin disassembly. It binds linear and 'Lys-63'-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase in p53/TP53 transcriptional activity because the unanchored polyubiquitin that accumulates is able to compete with ubiquitinated p53/TP53 but not with MDM2 for proteasomal recognition.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords