- Remove All
- Your shopping cart is currently empty
IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy.
Pack Size | Price | Availability | Quantity |
---|---|---|---|
100 μg | $700 | 7-10 days |
Biological Activity | Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
Description | IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy. |
Species | Mouse |
Expression System | Baculovirus Insect Cells |
Tag | N-His |
Accession Number | Q9JHI5 |
Synonyms | isovaleryl-CoA dehydrogenase,AI463340,6720455E18Rik,1300016K07Rik |
Construction | A DNA sequence encoding the mouse IVD (NP_062800.1) (His31-Arg424) was expressed with a polyhistidine tag at the N-terminus. Predicted N terminal: His |
Protein Purity | > 90 % as determined by SDS-PAGE. |
Molecular Weight | 45.3 kDa (predicted) |
Endotoxin | < 1.0 EU/μg of the protein as determined by the LAL method. |
Formulation | Lyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, pH 7.5, 150 mM NaCl, 10% glycerol. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization. |
Reconstitution | A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information. |
Stability & Storage | It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
Shipping | In general, Lyophilized powders are shipping with blue ice. |
Research Background | IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy. |
Copyright © 2015-2024 TargetMol Chemicals Inc. All Rights Reserved.