Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

IVD Protein, Mouse, Recombinant (His)

IVD Protein, Mouse, Recombinant (His)
Resource Download

IVD Protein, Mouse, Recombinant (His)

Catalog No. TMPY-05066
IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
100 μg$7007-10 days
Bulk & Custom
Add to Cart
Questions
View More

Biological Description

Biological Information
Testing in progress
Description
IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy.
Species
Mouse
Expression System
Baculovirus Insect Cells
TagN-His
Accession NumberQ9JHI5
Synonyms
6720455E18Rik,AI463340,isovaleryl-CoA dehydrogenase,1300016K07Rik
Construction
Mouse IVD (NP_062800.1) (His31-Arg424)
Protein Purity
> 90 % as determined by SDS-PAGE.
Molecular Weight45.3 kDa (predicted)
Endotoxin< 1.0 EU/μg of the protein as determined by the LAL method.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 50 mM Tris, pH 7.5, 150 mM NaCl, 10% glycerol. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
IVD (Isovaleryl-CoA Dehydrogenase) is a Protein Coding gene. IVD is a mitochondrial matrix enzyme that catalyzes the third step in leucine catabolism. IVD plays an essential role in processing proteins obtained from the diet. The body breaks down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for growth and development. Isovaleryl-CoA dehydrogenase helps process a particular amino acid called leucine. Specifically, isovaleryl-CoA dehydrogenase is responsible for the third step in the breakdown of leucine. This step is a chemical reaction that converts a molecule called isovaleryl-CoA to another molecule, 3-methylcrotonyl-CoA. Additional chemical reactions convert 3-methylcrotonyl-CoA into molecules that are used for energy.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords