- Remove All
- Your shopping cart is currently empty
Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. PLpro is a cysteine protease located within the non-structural protein 3 (NS3) section of the viral polypeptide. PLPro activity is required to process the viral polyprotein into functional, mature subunits; specifically, PLPro cleaves a site at the amino-terminus of the viral replicase region. In addition to its role in viral protein maturation, PLPro possesses a deubiquitinating and deISGylating activity. In vivo, this protease antagonizes innate immunity by inhibiting IRF3-induced production of type I interferons.
Pack Size | Price | Availability | Quantity |
---|---|---|---|
10 μg | $184 | 7-10 days | |
50 μg | $558 | 7-10 days | |
500 μg | $2,970 | 7-10 days | |
1 mg | $4,480 | 7-10 days |
Biological Activity | Activity has not been tested. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
Description | Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. PLpro is a cysteine protease located within the non-structural protein 3 (NS3) section of the viral polypeptide. PLPro activity is required to process the viral polyprotein into functional, mature subunits; specifically, PLPro cleaves a site at the amino-terminus of the viral replicase region. In addition to its role in viral protein maturation, PLPro possesses a deubiquitinating and deISGylating activity. In vivo, this protease antagonizes innate immunity by inhibiting IRF3-induced production of type I interferons. |
Species | SARS-CoV-2 |
Expression System | E. coli |
Tag | Tag Free |
Accession Number | QHD43415.1 |
Synonyms | Replicase polyprotein 1a,pp1a,PL-PRO,PLpro,Papain-like Protease |
Amino Acid | Glu1564-Lys1878 |
Construction | Glu1564-Lys1878 |
Protein Purity | Greater than 95% as determined by reducing SDS-PAGE. (QC verified) |
Molecular Weight | 34 KDa (reducing condition) |
Formulation | Supplied as a 0.2 μm filtered solution of 20 mM Tris-HCl, 10 mM 2-Mercaptoethanol, 20% Glycerol, pH 7.5. |
Stability & Storage | Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
Shipping | Shipping with blue ice. |
Research Background | Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. PLpro is a cysteine protease located within the non-structural protein 3 (NS3) section of the viral polypeptide. PLPro activity is required to process the viral polyprotein into functional, mature subunits; specifically, PLPro cleaves a site at the amino-terminus of the viral replicase region. In addition to its role in viral protein maturation, PLPro possesses a deubiquitinating and deISGylating activity. In vivo, this protease antagonizes innate immunity by inhibiting IRF3-induced production of type I interferons. |
Copyright © 2015-2024 TargetMol Chemicals Inc. All Rights Reserved.