Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

ML-345

Catalog No. T35802Cas No. 1632125-79-1

Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that acts as the major insulin-degrading protease in vivo, mediating the termination of insulin signaling. [1] In addition to regulating insulin action in diabetes pathogenesis, IDE plays a role in Varicella-Zoster virus infection and degradation of amyloid-β, a peptide implicated in Alzheimer's disease. ML-345 is a small molecule inhibitor that selectively targets cysteine819 in IDE with an EC50 value of 188 nM. [2] It demonstrates 10-fold selectivity for IDE over a panel of enzymes with reactive cysteine residues.[2]

ML-345

ML-345

Catalog No. T35802Cas No. 1632125-79-1
Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that acts as the major insulin-degrading protease in vivo, mediating the termination of insulin signaling. [1] In addition to regulating insulin action in diabetes pathogenesis, IDE plays a role in Varicella-Zoster virus infection and degradation of amyloid-β, a peptide implicated in Alzheimer's disease. ML-345 is a small molecule inhibitor that selectively targets cysteine819 in IDE with an EC50 value of 188 nM. [2] It demonstrates 10-fold selectivity for IDE over a panel of enzymes with reactive cysteine residues.[2]
Pack SizePriceAvailabilityQuantity
2 mg$585 days
Bulk & Custom
Add to Cart
Questions
View More
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that acts as the major insulin-degrading protease in vivo, mediating the termination of insulin signaling. [1] In addition to regulating insulin action in diabetes pathogenesis, IDE plays a role in Varicella-Zoster virus infection and degradation of amyloid-β, a peptide implicated in Alzheimer's disease. ML-345 is a small molecule inhibitor that selectively targets cysteine819 in IDE with an EC50 value of 188 nM. [2] It demonstrates 10-fold selectivity for IDE over a panel of enzymes with reactive cysteine residues.[2]
Reference:[1]. Maianti, J.P., McFedries, A., Foda, Z.H., et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 511(7507), 94-98 (2014).[2]. Bannister, T.D., Wang, H., Abdul-Hay, S.O., et al. ML345, a small-molecule inhibitor of the insulin-degrading enzyme (IDE). 1 R03 DA024888-01 (MLSCN cycle 6), 1-41 (2014).
Chemical Properties
Molecular Weight479.55
FormulaC21H22FN3O5S2
Cas No.1632125-79-1
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
Solubility Information
DMF: 5 mg/mL
DMF:PBS(pH 7.2)(1:1): 0.5 mg/mL
DMSO: 1 mg/mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy ML-345 | purchase ML-345 | ML-345 cost | order ML-345 | ML-345 chemical structure | ML-345 formula | ML-345 molecular weight