Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Rupatadine

😃Good
Catalog No. T36618Cas No. 158876-82-5

Rupatadine (UR-12592) is a potent dual PAF/H1 antagonist with Ki values of 0.55 μM in rabbit platelet membranes and 0.1 μM in guinea pig cerebellum membranes.

Rupatadine

Rupatadine

😃Good
Catalog No. T36618Cas No. 158876-82-5
Rupatadine (UR-12592) is a potent dual PAF/H1 antagonist with Ki values of 0.55 μM in rabbit platelet membranes and 0.1 μM in guinea pig cerebellum membranes.
Pack SizePriceAvailabilityQuantity
5 mg$9707-10 days
Bulk & Custom
Add to Cart
Questions
View More
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
Rupatadine (UR-12592) is a potent dual PAF/H1 antagonist with Ki values of 0.55 μM in rabbit platelet membranes and 0.1 μM in guinea pig cerebellum membranes.
Targets&IC50
PAF:0.55 μM (Ki), H1 receptor:0.1 μM (Ki)
In vitro
Target: PAF/H1 antagonist. Rupatadine competitively inhibited histamine-induced guinea pig ileum contraction (pA2 = 9.29 +/- 0.06) without affecting contraction induced by ACh, serotonin or leukotriene D4 (LTD4). It also competitively inhibited PAF-induced platelet aggregation in washed rabbit platelets (WRP) (pA2 = 6.68 +/- 0.08) and in human platelet-rich plasma (HPRP) (IC50 = 0.68 microM), while not affecting ADP- or arachidonic acid-induced platelet aggregation [1]. The IC50 for rupatadine in A23187, concanavalin A and anti-IgE induced histamine release was 0.7+/-0.4 microM, 3.2+/-0.7 microM and 1.5+/-0.4 microM, respectively whereas for loratadine the IC50 was 2.1+/-0.9 microM, 4.0+/-1.3 M and 1.7+/-0.5 microM. SR-27417A exhibited no inhibitory effect [2].
In vivo
Rupatadine blocked histamine- and PAF-induced effects in vivo, such as hypotension in rats (ID50 = 1.4 and 0.44 mg/kg i.v., respectively) and bronchoconstriction in guinea pigs (ID50 = 113 and 9.6 micrograms/kg i.v.). Moreover, it potently inhibited PAF-induced mortality in mice (ID50 = 0.31 and 3.0 mg/kg i.v. and p.o., respectively) and endotoxin-induced mortality in mice and rats (ID50 = 1.6 and 0.66 mg/kg i.v.) [1]. rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988 [3].
Chemical Properties
Molecular Weight415.96
FormulaC26H26ClN3
Cas No.158876-82-5
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
Solubility Information
DMSO: Soluble

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy Rupatadine | purchase Rupatadine | Rupatadine cost | order Rupatadine | Rupatadine chemical structure | Rupatadine in vivo | Rupatadine in vitro | Rupatadine formula | Rupatadine molecular weight