Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

MDH1 Protein, Rat, Recombinant (His)

Catalog No. TMPY-02599

Malate dehydrogenases 1(MDH1 / MDHA) is a soluble form of malate dehydrogenases. Malate dehydrogenases (MDH) is a group of multimeric enzymes consisting of identical subunits usually organized as either dimer or tetramers with subunit molecular weights of 30-35 kDa. MDH has been isolated from different sources including archaea, eubacteria, fungi, plants, and mammals. MDH catalyzes the NAD/NADH-dependent interconversion of the substrates malate and oxaloacetate. This reaction plays a key part in the malate/aspartate shuttle across the mitochondrial membrane, and in the tricarboxylic acid cycle within the mitochondrial matrix. The enzymes share a common catalytic mechanism and their kinetic properties are similar, which demonstrates a high degree of structural similarity. The three-dimensional structures and elements essential for catalysis are conserved between mitochondrial and cytoplasmic forms of MDH in eukaryotic cells even though these isoenzymes are only marginally related at the level of the primary structure.

MDH1 Protein, Rat, Recombinant (His)

MDH1 Protein, Rat, Recombinant (His)

Catalog No. TMPY-02599
Malate dehydrogenases 1(MDH1 / MDHA) is a soluble form of malate dehydrogenases. Malate dehydrogenases (MDH) is a group of multimeric enzymes consisting of identical subunits usually organized as either dimer or tetramers with subunit molecular weights of 30-35 kDa. MDH has been isolated from different sources including archaea, eubacteria, fungi, plants, and mammals. MDH catalyzes the NAD/NADH-dependent interconversion of the substrates malate and oxaloacetate. This reaction plays a key part in the malate/aspartate shuttle across the mitochondrial membrane, and in the tricarboxylic acid cycle within the mitochondrial matrix. The enzymes share a common catalytic mechanism and their kinetic properties are similar, which demonstrates a high degree of structural similarity. The three-dimensional structures and elements essential for catalysis are conserved between mitochondrial and cytoplasmic forms of MDH in eukaryotic cells even though these isoenzymes are only marginally related at the level of the primary structure.
Pack SizePriceAvailabilityQuantity
50 μg$6007-10 days
Bulk & Custom
Add to Cart
Questions
View More
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Information

Biological Activity
Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first.
Description
Malate dehydrogenases 1(MDH1 / MDHA) is a soluble form of malate dehydrogenases. Malate dehydrogenases (MDH) is a group of multimeric enzymes consisting of identical subunits usually organized as either dimer or tetramers with subunit molecular weights of 30-35 kDa. MDH has been isolated from different sources including archaea, eubacteria, fungi, plants, and mammals. MDH catalyzes the NAD/NADH-dependent interconversion of the substrates malate and oxaloacetate. This reaction plays a key part in the malate/aspartate shuttle across the mitochondrial membrane, and in the tricarboxylic acid cycle within the mitochondrial matrix. The enzymes share a common catalytic mechanism and their kinetic properties are similar, which demonstrates a high degree of structural similarity. The three-dimensional structures and elements essential for catalysis are conserved between mitochondrial and cytoplasmic forms of MDH in eukaryotic cells even though these isoenzymes are only marginally related at the level of the primary structure.
Species
Rat
Expression System
E. coli
TagC-His
Accession NumberO88989
Synonyms
malate dehydrogenase 1, NAD (soluble)
Construction
A DNA sequence encoding the rat MDH1 (O88989) (Met 4-Ala 334) was expressed with a polyhistidine tag at the C-terminus. Predicted N terminal: Met 1
Protein Purity
> 90 % as determined by SDS-PAGE
Molecular Weight38 kDa (predicted); 39 kDa (reducing conditions)
EndotoxinPlease contact us for more information.
FormulationLyophilized from a solution filtered through a 0.22 μm filter, containing 20 mM Tris, 10% glycerol, pH 8.0.Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization.
Reconstitution
A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information.
Stability & Storage
It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots.
ShippingIn general, Lyophilized powders are shipping with blue ice.
Research Background
Malate dehydrogenases 1(MDH1 / MDHA) is a soluble form of malate dehydrogenases. Malate dehydrogenases (MDH) is a group of multimeric enzymes consisting of identical subunits usually organized as either dimer or tetramers with subunit molecular weights of 30-35 kDa. MDH has been isolated from different sources including archaea, eubacteria, fungi, plants, and mammals. MDH catalyzes the NAD/NADH-dependent interconversion of the substrates malate and oxaloacetate. This reaction plays a key part in the malate/aspartate shuttle across the mitochondrial membrane, and in the tricarboxylic acid cycle within the mitochondrial matrix. The enzymes share a common catalytic mechanism and their kinetic properties are similar, which demonstrates a high degree of structural similarity. The three-dimensional structures and elements essential for catalysis are conserved between mitochondrial and cytoplasmic forms of MDH in eukaryotic cells even though these isoenzymes are only marginally related at the level of the primary structure.

Dose Conversion

You can also refer to dose conversion for different animals. More

Calculator

  • Reconstitution Calculator
  • Recombinant Protein Dilution Calculator
  • Specific Activity Calculator

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords