Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Glycerophospho-N-Arachidonoyl Ethanolamine

😃Good
Catalog No. T37530Cas No. 201738-25-2

N-Acylated ethanolamines (NAE) are naturally-occurring lipids that have diverse bioactivities. The different types of NAE can be derived from glycerophospho-linked precursors by the activity of glycerophosphodiesterase 1 (GDE1). Glycerophospho-N-arachidonoyl ethanolamine is the precursor of arachidonoyl ethanolamide (AEA), also known as anandamide. AEA is an endogenous cannabinoid neurotransmitter that binds to both central cannabinoid (CB1) and peripheral cannabinoid (CB2) receptors. It inhibits the specific binding of [3H]-HU-243 to synaptosomal membranes with a Ki value of 52 nM, compared to 46 nM for δ9-THC.

Glycerophospho-N-Arachidonoyl Ethanolamine

Glycerophospho-N-Arachidonoyl Ethanolamine

😃Good
Catalog No. T37530Cas No. 201738-25-2
N-Acylated ethanolamines (NAE) are naturally-occurring lipids that have diverse bioactivities. The different types of NAE can be derived from glycerophospho-linked precursors by the activity of glycerophosphodiesterase 1 (GDE1). Glycerophospho-N-arachidonoyl ethanolamine is the precursor of arachidonoyl ethanolamide (AEA), also known as anandamide. AEA is an endogenous cannabinoid neurotransmitter that binds to both central cannabinoid (CB1) and peripheral cannabinoid (CB2) receptors. It inhibits the specific binding of [3H]-HU-243 to synaptosomal membranes with a Ki value of 52 nM, compared to 46 nM for δ9-THC.
Pack SizePriceAvailabilityQuantity
1 mg$21035 days
5 mg$92335 days
10 mg$1,62035 days
Bulk & Custom
Add to Cart
Questions
View More
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
N-Acylated ethanolamines (NAE) are naturally-occurring lipids that have diverse bioactivities. The different types of NAE can be derived from glycerophospho-linked precursors by the activity of glycerophosphodiesterase 1 (GDE1). Glycerophospho-N-arachidonoyl ethanolamine is the precursor of arachidonoyl ethanolamide (AEA), also known as anandamide. AEA is an endogenous cannabinoid neurotransmitter that binds to both central cannabinoid (CB1) and peripheral cannabinoid (CB2) receptors. It inhibits the specific binding of [3H]-HU-243 to synaptosomal membranes with a Ki value of 52 nM, compared to 46 nM for δ9-THC.
Chemical Properties
Molecular Weight501.601
FormulaC25H44NO7P
Cas No.201738-25-2
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
Solubility Information
DMSO: 20 mg/mL
DMF: 20 mg/mL
PBS (pH 7.2): 10 mg/mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy Glycerophospho-N-Arachidonoyl Ethanolamine | purchase Glycerophospho-N-Arachidonoyl Ethanolamine | Glycerophospho-N-Arachidonoyl Ethanolamine cost | order Glycerophospho-N-Arachidonoyl Ethanolamine | Glycerophospho-N-Arachidonoyl Ethanolamine chemical structure | Glycerophospho-N-Arachidonoyl Ethanolamine formula | Glycerophospho-N-Arachidonoyl Ethanolamine molecular weight