Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

MPT0B098

😃Good
Catalog No. T71116Cas No. 1254363-89-7

MPT0B098 is a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. MPT0B098 arrests cells in the G2–M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is......

MPT0B098

MPT0B098

😃Good
Catalog No. T71116Cas No. 1254363-89-7
MPT0B098 is a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. MPT0B098 arrests cells in the G2–M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is......
Pack SizePriceAvailabilityQuantity
25 mg$1,5206-8 weeks
50 mg$1,9806-8 weeks
100 mg$2,5006-8 weeks
Bulk & Custom
Add to Cart
Questions
View More
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
MPT0B098 is a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. MPT0B098 arrests cells in the G2–M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is......
Chemical Properties
Molecular Weight366.43
FormulaC20H18N2O3S
Cas No.1254363-89-7
Storage & Solubility Information
StorageShipping with blue ice.

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy MPT0B098 | purchase MPT0B098 | MPT0B098 cost | order MPT0B098 | MPT0B098 chemical structure | MPT0B098 formula | MPT0B098 molecular weight