Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

(-)-Cevimeline hydrochloride hemihydrate

Catalog No. T13421
Alias (-)-SNI-2011, (-)-AF102B hydrochloride hemihydrate

Cevimeline hydrochloride hemihydrate ((-)-SNI-2011), a novel muscarinic receptor agonist, is being explored as a potential treatment for xerostomia in Sjogren's syndrome, exhibiting an IC50 value indicative of its affinity for mAChR. This compound's pharmacological effects on the gastrointestinal, urinary, and reproductive systems, alongside its impact on various tissues, were thoroughly examined in species including mice, rats, guinea pigs, rabbits, and dogs. The metabolic breakdown of (-)-SNI-2011 was studied in vitro using rat and dog liver microsomes to assess its biotransformation. Upon oral administration, peak plasma concentrations were reached within an hour in both rats and dogs, showcasing rapid absorption and a subsequent decrease in concentration with a half-life ranging from 0.4 to 1.1 hours. Bioavailability was noted at 50% in rats and 30% in dogs. Metabolic pathways highlighted significant species differences, with both S- and N-oxidized metabolites identified in rats, but only N-oxidized metabolites in dogs. Additionally, gender differences in pharmacokinetics were observed in rats but were absent in dogs. In vitro studies pinpointed the involvement of cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) in the metabolism of (-)-SNI-2011, specifically through sulfoxidation and N-oxidation processes, respectively. CYP2D and CYP3A were identified as the primary enzymes responsible for sulfoxidation in rat liver microsomes.

(-)-Cevimeline hydrochloride hemihydrate

(-)-Cevimeline hydrochloride hemihydrate

Catalog No. T13421Alias (-)-SNI-2011, (-)-AF102B hydrochloride hemihydrate
Cevimeline hydrochloride hemihydrate ((-)-SNI-2011), a novel muscarinic receptor agonist, is being explored as a potential treatment for xerostomia in Sjogren's syndrome, exhibiting an IC50 value indicative of its affinity for mAChR. This compound's pharmacological effects on the gastrointestinal, urinary, and reproductive systems, alongside its impact on various tissues, were thoroughly examined in species including mice, rats, guinea pigs, rabbits, and dogs. The metabolic breakdown of (-)-SNI-2011 was studied in vitro using rat and dog liver microsomes to assess its biotransformation. Upon oral administration, peak plasma concentrations were reached within an hour in both rats and dogs, showcasing rapid absorption and a subsequent decrease in concentration with a half-life ranging from 0.4 to 1.1 hours. Bioavailability was noted at 50% in rats and 30% in dogs. Metabolic pathways highlighted significant species differences, with both S- and N-oxidized metabolites identified in rats, but only N-oxidized metabolites in dogs. Additionally, gender differences in pharmacokinetics were observed in rats but were absent in dogs. In vitro studies pinpointed the involvement of cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) in the metabolism of (-)-SNI-2011, specifically through sulfoxidation and N-oxidation processes, respectively. CYP2D and CYP3A were identified as the primary enzymes responsible for sulfoxidation in rat liver microsomes.
Pack SizePriceAvailabilityQuantity
25 mg$3,96010-14 weeks
Bulk & Custom
Add to Cart
Questions
View More
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
Cevimeline hydrochloride hemihydrate ((-)-SNI-2011), a novel muscarinic receptor agonist, is being explored as a potential treatment for xerostomia in Sjogren's syndrome, exhibiting an IC50 value indicative of its affinity for mAChR. This compound's pharmacological effects on the gastrointestinal, urinary, and reproductive systems, alongside its impact on various tissues, were thoroughly examined in species including mice, rats, guinea pigs, rabbits, and dogs. The metabolic breakdown of (-)-SNI-2011 was studied in vitro using rat and dog liver microsomes to assess its biotransformation. Upon oral administration, peak plasma concentrations were reached within an hour in both rats and dogs, showcasing rapid absorption and a subsequent decrease in concentration with a half-life ranging from 0.4 to 1.1 hours. Bioavailability was noted at 50% in rats and 30% in dogs. Metabolic pathways highlighted significant species differences, with both S- and N-oxidized metabolites identified in rats, but only N-oxidized metabolites in dogs. Additionally, gender differences in pharmacokinetics were observed in rats but were absent in dogs. In vitro studies pinpointed the involvement of cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) in the metabolism of (-)-SNI-2011, specifically through sulfoxidation and N-oxidation processes, respectively. CYP2D and CYP3A were identified as the primary enzymes responsible for sulfoxidation in rat liver microsomes.
Alias(-)-SNI-2011, (-)-AF102B hydrochloride hemihydrate
Chemical Properties
Molecular Weight244.78
FormulaC10H19ClNO1.5S
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy (-)-Cevimeline hydrochloride hemihydrate | purchase (-)-Cevimeline hydrochloride hemihydrate | (-)-Cevimeline hydrochloride hemihydrate cost | order (-)-Cevimeline hydrochloride hemihydrate | (-)-Cevimeline hydrochloride hemihydrate chemical structure | (-)-Cevimeline hydrochloride hemihydrate formula | (-)-Cevimeline hydrochloride hemihydrate molecular weight