Home Tools
Log in
Cart

7ACC1

Catalog No. T5845   CAS 50995-74-9
Synonyms: DEAC, Coumarin D 1421, 7-(Diethylamino)coumarin-3-carboxylic acid, D 1421

7ACC1 (D 142) selectively affects a single part of the MCT symporter translocation cycle, leading to strict inhibition of lactate influx. This singular activity is associated with antitumor effects less prone to resistance and side effects.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
7ACC1 Chemical Structure
7ACC1, CAS 50995-74-9
Pack Size Availability Price/USD Quantity
25 mg In stock $ 31.00
50 mg In stock $ 44.00
100 mg In stock $ 64.00
200 mg In stock $ 98.00
1 mL * 10 mM (in DMSO) In stock $ 70.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 98%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description 7ACC1 (D 142) selectively affects a single part of the MCT symporter translocation cycle, leading to strict inhibition of lactate influx. This singular activity is associated with antitumor effects less prone to resistance and side effects.
In vitro 7-(Diethylamino)coumarin-3-carboxylic acid compounds on lactate influx using oxidative cancer cells known to maintain in vitro their capacity to take up lactate as an energetic fuel, and the lack of effects on lactate efflux using highly glycolytic cells. Accordingly, in oxidative human cancer cervix cells, SiHa and Hela, which express both MCT1 and MCT4 isoforms, a potent inhibition of both lactate influx and cell proliferation was obtained with 7-(Diethylamino)coumarin-3-carboxylic acid, whereas the bona fide MCT1/MCT2 inhibitor AR-C155858 failed to do so. The effects of 7-(Diethylamino)coumarin-3-carboxylic acid were confirmed in MCT1/4-expressing pharynx squamous FaDu tumor cells. These observations strongly suggest that 7-(Diethylamino)coumarin-3-carboxylic acid compounds are inhibitors of lactate entry through both MCT1 and MCT4 preventing any compensatory effects when MCT1, the main path for lactate uptake, is inhibited.
In vivo 7-(Diethylamino)coumarin-3-carboxylic acid developed to selectively interfere with lactate fluxes in the lactate-rich tumor microenvironment.?The pharmacologic properties of two compounds of this family, including their effects on lactate influx and efflux and antitumor activity, were investigated using human cancer cell lines and mouse xenograft models.?Contrary to the reference MCT1 inhibitor AR-C155858, 7-(Diethylamino)coumarin-3-carboxylic acid unexpectedly inhibited lactate influx but not efflux in tumor cells expressing MCT1 and MCT4 transporters.?7-(Diethylamino)coumarin-3-carboxylic acid delayed the growth of cervix SiHa tumors, colorectal HCT116 tumors, and orthoptopic MCF-7 breast tumors.?MCT target engagement was confirmed by the lack of activity of 7-(Diethylamino)coumarin-3-carboxylic acid on bladder UM-UC-3 carcinoma that does not express functional MCT.7-(Diethylamino)coumarin-3-carboxylic acid?also inhibited SiHa tumor relapse after treatment with cisplatin.?Finally, we found that contrary to AR-C155858, 7-(Diethylamino)coumarin-3-carboxylic acid did not prevent the cell entry of the substrate-mimetic drug 3-bromopyruvate (3BP) through MCT1, and contributed to the inhibition of tumor relapse after 3BP treatment.
Cell Research Cervix cancer cells(SiHa and HeLa) and mammary cancer cells (MDA-MB-231, MCF-7) were cultured in Dulbecco's Modified Eagle Medium (DMEM), and HCT-116 colorectal cancer cells in McCoy's 5A medium, UM-UC-3 bladder transitional cell carcinoma and pharynx squamous carcinoma FaDu cells in Eagle's MEM, HL-60 acute promyelocytic leukemia cells and K562 chronic myelogenous leukemia cells were cultured in suspension in RPMI-1640 medium. For treatments, SiHa, Hela, and MDA-MB231 cells were seeded in flat-bottom 96-well plates in DMEM. After overnight incubation, the culture medium was replaced by 100 μL of medium containing 7ACC1, 7ACC2, AR-C155858, or 3BP. Nonadherent HL-60 and K562 cells were directly treated in flat-bottom 96-well plates in RPMI medium. Antiproliferative effects were determined using MTT or Presto Blue assay for adherent cells or cell counting using a Cellometer Auto T4 for nonadherent cells.
Animal Research Eight-week-old NMRI female nude mice (Elevage Janvier) were injected subcutaneously with 2 × 106 SiHa cells, 2 × 10^6 HCT-11^6 cells, or 5 × 10^6 UM-UC-3 cells. An orthotopic breast cancer model was also used with MCF-7 tumor cells injected into the mammary fat pad of mice; a 17β-estradiol pellet had first been subcutaneously implanted in these mice as previously described . When tumors reached a mean diameter of 5 mm, 7-(Diethylamino)coumarin-3-carboxylic acid compounds (3 mg/kg) or AR-C155858 (3 mg/kg) were daily injected intraperitoneally; in some experiments, 7-(Diethylamino)coumarin-3-carboxylic acid treatment was combined with cisplatin (5 mg/kg) injected intraperitoneally at days 0 and 7 (7-(Diethylamino)coumarin-3-carboxylic acid administered daily except at days 0 and 7) or 3BP(3 mg/kg) injected i.p. from day 0 to 4 and day 7 to 11 (7-(Diethylamino)coumarin-3-carboxylic acid administered together with 3BP). Cisplatin and 3BP were also administered alone and control mice were injected with vehicle (dimethyl sulfoxide). Tumor sizes were tracked with an electronic calliper and determined using the formula: (length × width^2 × π)/6.
Synonyms DEAC, Coumarin D 1421, 7-(Diethylamino)coumarin-3-carboxylic acid, D 1421
Molecular Weight 261.27
Formula C14H15NO4
CAS No. 50995-74-9

Storage

keep away from direct sunlight

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMSO: 32 mg/mL (122.48 mM)

TargetMolReferences and Literature

1. Draoui N , Schicke O , Seront E , et al. Antitumor Activity of 7-Aminocarboxycoumarin Derivatives, a New Class of Potent Inhibitors of Lactate Influx but Not Efflux[J]. Molecular Cancer Therapeutics, 2014, 13(6):1410-1418.

Related compound libraries

This product is contained In the following compound libraries:
Anti-Cancer Active Compound Library Anti-Cancer Compound Library NO PAINS Compound Library Ion Channel Inhibitor Library Bioactive Compounds Library Max Bioactive Compound Library Inhibitor Library Target-Focused Phenotypic Screening Library

Related Products

Related compounds with same targets
Niflumic acid α-Cyano-4-hydroxycinnamic acid Lactate transportor 1 AR-C155858 BAY-8002 MCT1-IN-3 VB124 7ACC2

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

7ACC1 50995-74-9 Membrane transporter/Ion channel Monocarboxylate transporter 7ACC-1 DEAC Inhibitor D1421 inhibit Coumarin D1421 Coumarin D 1421 D-1421 Coumarin D-1421 7-(Diethylamino)coumarin-3-carboxylic acid Monocarboxylate Transporter D 1421 inhibitor

 

TargetMol