Home Tools
Log in
Cart

Lapatinib

Catalog No. T0078   CAS 231277-92-2
Synonyms: GSK572016, GW572016

Lapatinib (GW572016) is an inhibitor of ErbB2 and EGFR (IC50=9.2/10.8 nM) with oral activity. Lapatinib has antitumor activity and can be used to treat advanced or metastatic breast cancer with HER2 overexpression.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Lapatinib Chemical Structure
Lapatinib, CAS 231277-92-2
Pack Size Availability Price/USD Quantity
25 mg In stock $ 39.00
50 mg In stock $ 50.00
100 mg In stock $ 67.00
200 mg In stock $ 84.00
500 mg In stock $ 129.00
1 g In stock $ 148.00
1 mL * 10 mM (in DMSO) In stock $ 30.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 99.89%
Purity: 99.68%
Purity: 99.03%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description Lapatinib (GW572016) is an inhibitor of ErbB2 and EGFR (IC50=9.2/10.8 nM) with oral activity. Lapatinib has antitumor activity and can be used to treat advanced or metastatic breast cancer with HER2 overexpression.
Targets&IC50 EGFR:10.8 nM (cell free), ErbB2:9.2 nM (cell free)
In vitro METHODS: Fourteen human gastric and esophageal cancer cell lines were treated with Lapatinib (0.3125-10 µmol/L) for 6 days, and the cell counts were measured by particle counter.
RESULTS: N87, OE19, NUGC4, NUGC3, FU97, and SNU16 cells were sensitive to Lapatinib with IC50s of 0.01, 0.09, 0.35, 2.24, 4.86, and 8.58 μmol/L, respectively. [1]
METHODS: Human breast cancer cells MDA-MB-231 and SK-BR-3 were treated with Lapatinib (0.5-2 µM) for 48 h, and the expression levels of target proteins were detected by Western Blot.
RESULTS: The expression of PKM2 was significantly reduced in both MDA-MB-231 and SK-BR-3 cell lines treated with 1.0 µM Lapatinib compared to lower concentrations. [2]
In vivo METHODS: To detect anti-tumor activity in vivo, Lapatinib (100 mg/kg) was administered intraperitoneally once daily for three weeks to CD-1 athymic nude mice bearing human gastric cancer tumor N87.
RESULTS: Lapatinib caused tumor regression in N87 xenografts. [1]
METHODS: To detect in vivo antitumor activity, Lapatinib (30-100 mg/kg administered by gavage twice daily for 21 days) and Topoteca (6-10 mg/kg administered intraperitoneally three times every four days) were administered by gavage to SCID mice harboring human mammary carcinoma tumor BT474.
RESULTS: The combination of Lapatinib and Topoteca showed enhanced efficacy in ER2+BT474 xenografts. [3]
Kinase Assay The IC50 values for inhibition of enzyme activity are generated by measuring the inhibition of phosphorylation of a peptide substrate. The intracellular kinase domains of EGFR and ErbB2 are purified from a baculovirus expression system. EGFR and ErbB2 reactions are performed in 96-well polystyrene round-bottomed plates in a final volume of 45 μL. Reaction mixtures contain 50 mM 4-morpholinepropanesulfonic acid (pH 7.5), 2 mM MnCl2, 10 μM ATP, 1 μCi of [γ33P] ATP/reaction, 50 μM Peptide A [Biotin-(amino hexonoic acid)-EEEEYFELVAKKK-CONH2], 1 mM dithiothreitol, and 1 μL of DMSO containing serial dilutions of Lapatinib beginning at 10 μM. The reaction is initiated by adding the indicated purified type-1 receptor intracellular domain. The amount of enzyme added is 1 pmol/reaction (20 nM). Reactions are terminated after 10 minutes at 23°C by adding 45 μL of 0.5% phosphoric acid in water. The terminated reaction mix (75 μL) is transferred to phosphocellulose filter plates. The plates are filtered and washed three times with 200 μL of 0.5% phosphoric acid. Scintillation cocktail (50 μL) is added to each well, and the assay is quantified by counting in a Packard Topcount. IC50 values are generated from 10-point dose-response curves [1].
Cell Research Cells are plated in 96-well plates, in the media, at the following densities: HFF and HN5, 1000 cells/well and BT474, 5000 cells/well. After 24 h, the cells are exposed to vehicle (0.3% DMSO) or Lapatinib (1 nM, 10 nM, 100 nM, 1μM, 10μM, and 100μM). Lapatinib is removed from the cells after 72 h and is replaced by either DMEM containing 10% FBS and 50 μg/mL Gentamicin (HFF and HN5) or RPMI containing 10% FBS and 50 μg/mL Gentamicin (BT474). Methylene blue staining is performed at the time points over a total period of 16 days. Relative cell number is estimated using methylene blue staining. The absorbance at 620 nm is read in a Spectra microplate reader. Cell death and cell cycle analysis are assessed by propidium iodide staining and antibody detection of incorporated BrdUrd and staining with propidium iodide [1].
Animal Research CD-1 nude female mice are used for HN5 human tumor xenografts, which are initiated by injection of a cell suspension in PBS: Matrigel (1:1). C.B-17 SCID female mice are used for BT474 human tumor xenografts, which are initiated by implantation of tumor fragments (20-100 mg) from established tumors. Tumor cells and fragments are implanted by s.c. injection in the right flank. The s.c. tumors are measured with calipers, and mice are weighed twice weekly. Tumor weight is estimated from tumor volume using this formula: length×width2/2=tumor volume (mm3). Treatment begins when tumors are palpable, 3-5 mm in diameter. Lapatinib (30 and 100 mg/kg) is administered p.o. twice daily for 21 days in a vehicle of sulfo-butyl-ether-β-cyclodextrin 10% aqueous solution (CD10) [1].
Synonyms GSK572016, GW572016
Molecular Weight 581.06
Formula C29H26ClFN4O4S
CAS No. 231277-92-2

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMSO: 93 mg/mL (160.1 mM)

H2O: < 1 mg/mL (insoluble or slightly soluble)

Ethanol: < 1 mg/mL (insoluble or slightly soluble)

TargetMolReferences and Literature

1. Wainberg ZA, et al. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res. 2010 Mar 1;16(5):1509-19. 2. Guan M, et al. Lapatinib Inhibits Breast Cancer Cell Proliferation by Influencing PKM2 Expression. Technol Cancer Res Treat. 2018 Jan 1;17:1533034617749418. 3. Molina JR, et al. Evaluation of lapatinib and topotecan combination therapy: tissue culture, murine xenograft, and phase I clinical trial data. Clin Cancer Res. 2008 Dec 1;14(23):7900-8. 4. Eryilmaz U, et al. S100A1 as a Potential Diagnostic Biomarker for Assessing Cardiotoxicity and Implications for the Chemotherapy of Certain Cancers. PLoS One. 2015 Dec 18;10(12):e0145418.

TargetMolCitations

1. Pan Z, Wang K, Wang X, et al. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Molecular Cancer. 2022, 21(1): 1-17. 2. Kang J, Guo Z, Zhang H, et al. Dual Inhibition of EGFR and IGF-1R Signaling Leads to Enhanced Antitumor Efficacy against Esophageal Squamous Cancer. International Journal of Molecular Sciences. 2022, 23(18): 10382 3. Jiang L, Zeng Y, Ai L, et al. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochemical Pharmacology. 2022: 115105 4. Zeng R, Yang X M, Li H W, et al.Simplified Derivatives of Tetrandrine as Potent and Specific P-gp Inhibitors to Reverse Multidrug Resistance in Cancer Chemotherapy.Journal of Medicinal Chemistry.2023 5. Sun R, Ge W, Zhu Y, et al.Proteomic Dynamics of Breast Cancer Cell Lines Identifies Potential Therapeutic Protein Targets.Molecular & Cellular Proteomics.2023: 100602.

Related compound libraries

This product is contained In the following compound libraries:
Anti-Cancer Drug Library Anti-Cancer Clinical Compound Library Tyrosine Kinase Inhibitor Library Anti-Cancer Approved Drug Library Anti-Cancer Active Compound Library HIF-1 Signaling Pathway Compound Library Clinical Compound Library Inhibitor Library Human Metabolite Library ReFRAME Related Library

Related Products

Related compounds with same targets
Deferasirox Trigonelline PRLX-93936 HCL Trolox Artesunate Dopamine hydrochloride Imidazole ketone erastin (-)-Epicatechin

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Lapatinib 231277-92-2 Angiogenesis Apoptosis Autophagy JAK/STAT signaling Tyrosine Kinase/Adaptors EGFR Ferroptosis GW 572016 GW-2016 GSK-572016 GW 2016 HER1 Inhibitor ErbB-1 GSK572016 inhibit GW572016 GW-572016 GW2016 GSK 572016 Epidermal growth factor receptor inhibitor

 

TargetMol