Home Tools
Log in
Cart

ZSTK474

Catalog No. T6168   CAS 475110-96-4

PI3K Inhibitor ZSTK474 is an orally available, s-triazine derivative, ATP-competitive phosphatidylinositol 3-kinase (PI3K) inhibitor with potential antineoplastic activity.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
ZSTK474 Chemical Structure
ZSTK474, CAS 475110-96-4
Pack Size Availability Price/USD Quantity
5 mg In stock $ 32.00
10 mg In stock $ 45.00
25 mg In stock $ 59.00
50 mg In stock $ 72.00
100 mg In stock $ 98.00
200 mg In stock $ 143.00
1 mL * 10 mM (in DMSO) In stock $ 44.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 99.47%
Purity: 99.36%
Purity: 99%
Purity: 98.29%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description PI3K Inhibitor ZSTK474 is an orally available, s-triazine derivative, ATP-competitive phosphatidylinositol 3-kinase (PI3K) inhibitor with potential antineoplastic activity.
Targets&IC50 PI3K:37 nM, PI3Kγ:49 nM, PI3Kα:16 nM, PI3Kβ:44 nM, PI3Kδ:4.6 nM
In vitro ZSTK474 at 1 μM potently reduces PI3K activity to 4.7% of the control level, whereas LY2194002 only reduces the activity to 44.6% of the control. ZSTK474 inhibits the activities of recombinant p110β, -γ, and -δ with IC50 of 17 nM, 53 nM, and 6 nM, respectively. ZSTK474 shows potent antiproliferative activity against a panel of 39 human cancer cell lines with mean GI50 of 0.32 μM, more effectively than that of LY294002 or wortmannin with mean GI50 of 7.4 μM or 10 μM, respectively. ZSTK474 treatment at 1 μM blocks membrane ruffling and generation of PIP3 induced by platelet-derived growth factor in murine embryonic fibroblasts (MEFs). ZSTK474 at 10 μM induces apoptosis in OVCAR3 cells, and induces complete G1-phase arrest but not apoptosis in A549 cells. ZSTK474 treatment at 0.5 μM significantly decreases the level of phosphorylated Akt and GSK-3β, as well as the cyclin D1 protein expression. ZSTK474 also inhibits the phosphorylation of other downstream signaling components that are involved in regulating cell proliferation including FKHRL1, FKHR, TSC-2, mTOR, and p70S6K in a dose-dependent manner. [1] ZSTK474 does not inhibit mTOR at 0.1 μM, and even at a concentration of 100 μM, ZSTK474 inhibits mTOR activity less than 40%. [2] ZSTK474 blocks VEGF-induced cell migration and the tube formation in human umbilical vein endothelial cells (HUVECs), and inhibits the expression of HIF-1α and secretion of VEGF in RXF-631L cells, exhibiting potent in vitro antiangiogenic activity. [3] ZSTK474 treatment inhibits the production of IFNγ and IL-17 in concanavalin A-activated T cells, and inhibits the proliferation and PGE(2) production by fibroblast-like synovial cells (FLS). [6]
In vivo Oral administration of ZSTK474 inhibits the growth of subcutaneously implanted mouse B16F10 melanoma tumors in a dose-dependent manner, producing tumor regression of 28.5%, 7.1%, or 4.9% on day 14 at 100, 200, or 400 mg/kg, respectively, which is superior to that of the four major anticancer drugs irinotecan, cisplatin, doxorubicin, and 5-fluorouracil at their respective maximum tolerable doses with tumor regression of 96%, 35.7%, 24%, or 68.3%, respectively. ZSTK474 treatment at 400 mg/kg completely inhibits the growth of A549, PC-3, and WiDr xenografts in mice, and induces the regression of A549 xenograft tumors. [1] ZSTK474 significantly inhibits tumor growth in the RXF-631L xenograft model, correlated with a significantly reduced number of microvessels in the ZSTK474-treated mice. [3] Oral administration of ZSTK474 ameliorates the progression of adjuvant-induced arthritis (AIA) in rats. [6]
Kinase Assay Inhibition of PI3K activity: A549 cells are lysed in a buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, and 1% Igepal CA-630, the lysates are centrifuged at 20,000 g and 4 °C for 10 minutes, and the supernatants are used as cell lysate (protein = 2-4 mg/mL). To immunoprecipitate PI3K, 200 μL of cell lysate are incubated with anti-p85 polyclonal antibody and protein G-agarose (5 μL). PI3Kα, PI3Kβ, and PI3Kδ can be immunoprecipitated by the anti-p85 polyclonal antibody. Agarose beads containing immunoprecipitates are washed twice with buffer A (20 mM Tris-HCl at pH 7.5, 150 mM NaCl, 5 mM EDTA, and 1% Igepal CA-630), once with buffer B (500 mM LiCl and 100 mM Tris-HCl at pH 7.5), once with distilled water, and once with buffer C (100 mM NaCl and 20 mM Tris-HCl at pH 7.5). Immunoprecipitates are suspended in 20 μL of buffer C containing phosphatidylinositol of 200 μg/mL. The mixture is preincubated with increasing concentrations of ZSTK474 at 25 °C for 5 minutes. [γ-32P]ATP (2 μCi per assay mixture; final concentration, 20 μM) and MgCl2 (final concentration, 20 mM) are added to start the reaction. The reaction mixture is incubated at 25 °C for 20 minutes. Phosphorylated products of phosphatidylinositol are separated by thin-layer chromatography and visualized by autoradiography. The phosphatidylinositol-3-phosphate region is scraped from the plate, and radioactivity is also measured with liquid scintillation spectroscopy. The level of inhibition for ZSTK474 is determined as the percentage of 32P counts per minute obtained without ZSTK474.
Cell Research Cells are exposed to increasing concentrations of ZSTK474 for 48 hours. The inhibition of cell proliferation is assessed by measuring changes in total cellular protein by use of a sulforhodamine B assay. Apoptosis is assessed by chromatin condensation or by flow cytometry. For chromatin condensation assay, cells are stained with Hoechst 33342 and examined by fluorescence microscopy. Morphologic changes induced by ZSTK474, such as the condensation of chromatin, are indicative of apoptosis. For flow cytometry analysis, cells are harvested, washed with ice-cold PBS, and fixed in 70% ethanol. Cells are then washed twice with ice-cold PBS again, treated with RNase A (500 μg/mL) at 37 °C for 1 hour, and stained with propidium iodide (25 μg/mL). The DNA content of the cells is analyzed with a flow cytometer. (Only for Reference)
Molecular Weight 417.41
Formula C19H21F2N7O2
CAS No. 475110-96-4

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMSO: 20 mg/mL (47.9 mM)

Ethanol: < 1 mg/mL (insoluble or slightly soluble)

H2O: < 1 mg/mL (insoluble or slightly soluble)

TargetMolReferences and Literature

1. Yaguchi S, et al. J Natl Cancer Inst, 2006, 98(8), 545-556. 2. Kong D, et al. Cancer Sci, 2007, 98(10), 1638-1642. 3. Kong D, et al. Eur J Cancer, 2009, 45(5), 857-865. 4. Marone R, et al. Mol Cancer Res, 2009, 7(4), 601-613. 5. Yang S, et al. PLoS One, 2011, 6(10), e26343. 6. Wang P, et al. Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J Neuroinflammation. 2016 Aug 22;13(1):192. 7. Liu F, et al. Prolonged inhibition of class I PI3K promotes liver cancer stem cell expansion by augmenting SGK3/GSK-3β/β-catenin signalling. J Exp Clin Cancer Res. 2018 Jun 25;37(1):122. 8. Han H W, Hahn S, Jeong H Y, et al. LINCS L1000 dataset-based repositioning of CGP-60474 as a highly potent anti-endotoxemic agent[J]. Scientific reports. 2018 Oct 8;8(1):14969.

TargetMolCitations

1. Han H W, Hahn S, Jeong H Y, et al. LINCS L1000 dataset-based repositioning of CGP-60474 as a highly potent anti-endotoxemic agent. Scientific Reports. 2018 Oct 8;8(1):14969

Related compound libraries

This product is contained In the following compound libraries:
Drug Repurposing Compound Library Anti-Cancer Clinical Compound Library Kinase Inhibitor Library Anti-Cancer Active Compound Library Inhibitor Library Anti-Cancer Drug Library NO PAINS Compound Library ReFRAME Related Library Apoptosis Compound Library Anti-Breast Cancer Compound Library

Related Products

Related compounds with same targets
PI4KIIIbeta-IN-9 TG 100713 IHMT-PI3Kδ-372 S-isomer Pilaralisib Eganelisib Desmethyl-VS-5584 PF-4989216 AS-252424

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

ZSTK474 475110-96-4 Autophagy PI3K/Akt/mTOR signaling PI3K ZSTK-474 Inhibitor Phosphoinositide 3-kinase inhibit ZSTK 474 inhibitor

 

TargetMol