Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Venetoclax

🥰Excellent
Catalog No. T2119Cas No. 1257044-40-8
Alias GDC-0199, ABT-199, ABT199, ABT 199

Venetoclax (ABT-199) is a Bcl-2 inhibitor (Ki<0.01 nM) with potent, selective, and orally active properties. Venetoclax has a 3-order-of-magnitude lower affinity for Bcl-xL and Bcl-W (Kis=48/245 nM). Venetoclax induces autophagy and apoptosis.

Venetoclax

Venetoclax

🥰Excellent
Purity: 99.96%
Catalog No. T2119Alias GDC-0199, ABT-199, ABT199, ABT 199Cas No. 1257044-40-8
Venetoclax (ABT-199) is a Bcl-2 inhibitor (Ki<0.01 nM) with potent, selective, and orally active properties. Venetoclax has a 3-order-of-magnitude lower affinity for Bcl-xL and Bcl-W (Kis=48/245 nM). Venetoclax induces autophagy and apoptosis.
Pack SizePriceAvailabilityQuantity
5 mg$48In Stock
10 mg$68In Stock
50 mg$89In Stock
100 mg$116In Stock
500 mg$382In Stock
1 g$596In Stock
1 mL x 10 mM (in DMSO)$66In Stock
Bulk & Custom
Add to Cart
Questions
View More

Related Compound Libraries of "Venetoclax"

Select Batch
Purity:99.96%
Contact us for more batch information
Resource Download
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.

Product Introduction

Bioactivity
Description
Venetoclax (ABT-199) is a Bcl-2 inhibitor (Ki<0.01 nM) with potent, selective, and orally active properties. Venetoclax has a 3-order-of-magnitude lower affinity for Bcl-xL and Bcl-W (Kis=48/245 nM). Venetoclax induces autophagy and apoptosis.
Targets&IC50
BCL-XL:48 nM (Ki, cell free), BCL2:<0.01 nM (Ki, cell free)
In vitro
METHODS: Eleven human T-cell acute lymphoblastic leukemia cells T-ALL were treated with Venetoclax (0-12 μM) for 48 h. Cell viability was measured by Celltiter-Glo Luminescent Cell Viability Assay.
RESULTS: The IC50 values of Venetoclax against 11 T-ALL species ranged from 0.2-10 μM. [1]
METHODS: Human acute lymphoid leukemia cells RS4;11 were incubated with Venetoclax (0.01-5 μM) for 3.5 h. Caspase-3/7 activity was assessed using the Caspase-GLO kit.
RESULTS: Venetoclax induced the activation of caspases, which is one of the characteristics of apoptosis. [2]
METHODS: Human primary HCL leukemia cells were treated with Venetoclax (0.1-1 μM) for 24 h. Cell death was detected using Flow Cytometry method.
RESULTS: Venetoclax significantly increased cell death in HCL cells in a dose-dependent manner. [3]
In vivo
METHODS: To test the antitumor activity in vivo, Venetoclax (100 mg/kg in 60% PG+30% PEG 400+10% ethanol) was orally administered once daily for twenty-one days to C.B-17 SCID-beige mice bearing human diffuse large B-cell lymphoma Toledo.
RESULTS: Venetoclax significantly inhibited the growth of Toledo tumor (TGImax=93%, TGD=220%). [2]
METHODS: To assay anti-tumor activity in vivo, Venetoclax (50 mg/kg in 10% ethanol+30% PEG 400+60% Phosal 50PG, administered orally once daily) and anti-PD-1 (10 mg/kg in PBS, administered intraperitoneally three times every four days) were administered to C57BL/6 mice harboring mouse colorectal carcinoma tumor MC38 for fourteen days.
RESULTS: Venetoclax enhances the antitumor efficacy of immune checkpoint inhibitors (ICIs) and increases PD-1+ T effector memory cells. Venetoclax does not impair human T-cell function in response to antigenic stimulation in vitro, nor does it antagonize anti-PD-1-induced T-cell activation. [4]
Kinase Assay
The equilibrium binding experiments of fluorescent peptides to Bcl-xL protein were performed in an Analyst 96-well plate reader under the following conditions: each individual well in a 96-well assay plate contained 5 μl DMSO, 15 nM fluorescent peptide, and increasing concentrations (from 0 to 2.24 μM) of Bcl-xL protein in assay buffer in a final volume of 125 μl. The plate was mixed on a shaker for 1 min and incubated at room temperature for an additional 15 min. The polarization in millipolarization units (mP) was measured at room temperature with an excitation wavelength at 485 nm and an emission wavelength at 530 nm. For assay stability testing, a plate containing a binding experiment was measured at different times over a 24-h period. Between each reading, the plate was covered with parafilm to prevent any solution evaporation. To determine the effect of DMSO on the assay, binding experiments were performed under conditions similar to those described above except that the amount of DMSO was varied from 0 to 4 to 8%. All experimental data were analyzed using Prism 3.0 software and Kd values were generated by fitting the experimental data using a sigmoidal dose-response nonlinear regression model [1].
Cell Research
RS4;11 cells were seeded at 50,000 per well in 96-well plates and treated with compounds diluted in half-log steps starting at 1 μM and ending at 0.00005 μM. All other leukemia and lymphoma cell lines were seeded at 15,000–20,000 cells per well in the appropriate medium and incubated with ABT-199 or navitoclax for 48 h. Effects on proliferation were determined using Cell TiterGlo reagent. EC50 values were determined by nonlinear regression analysis of the concentration-response data. Mouse FL5.12–BCL-2 and FL5.12–BCL-XL cells were propagated and assessed as described previously. Bak?/? Bax?/? double knockout mouse embryonic fibroblasts were seeded into 96-well microtiter plates at 5,000 cells per well in DMEM supplemented with 10% FBS. ABT-199 in the same culture medium was added in half-log dilutions starting at 5 μM. The cells were then incubated at 37 °C (5% CO2) for 48 h, and the effects on proliferation were determined using Cell TiterGlo reagent according to the manufacturer's instructions [1].
Animal Research
Female C.B-17 SCID mice (DoHH2 and Granta-519 xenografts) and female C.B-17 SCID-beige mice (RS4;11 and Toledo xenografts) were inoculated with 1 × 10^6 (DoHH2) or 5 × 10^6 (Granta-519, Toledo and RS4;11) cells subcutaneously in the right flank. The inoculation volume (0.2 ml) comprised a 50:50 mixture of cells in growth media and Matrigel. Electronic calipers were used to measure the length and width of each tumor 2–3 times per week. Tumor volume was estimated by applying the following equation: volume = length × width2/2. When tumors reached approximately 220 mm3, mice were size matched (day 0) into treatment and control groups. All xenograft trials were conducted using ten mice per group, and all mice were ear tagged and monitored individually throughout the studies. ABT-199 was formulated for oral dosing in 60% phosal 50 propylene glycol (PG), 30% polyethylene glycol (PEG) 400 and 10% ethanol, and bendamustine and rituximab were formulated in accordance with the manufacturer's instructions. ABT-199 was delivered approximately 2 h before bendamustine or bendamustine plus rituximab. TGImax was calculated as the greatest treatment response using the following equation: TGImax = (1 ? mean tumor volume of the treated group/mean tumor volume of the vehicle control group) × 100. The TGD (%) was determined as the percentage increase of the median time period for the treatment group to reach an arbitrary tumor volume of 1,000 mm3 relative to the vehicle control group. A complete tumor regression response was the portion of the population with tumors ≤25 mm3 for at least three consecutive measurements [1].
AliasGDC-0199, ABT-199, ABT199, ABT 199
Chemical Properties
Molecular Weight868.44
FormulaC45H50ClN7O7S
Cas No.1257044-40-8
SmilesO=C(C1=CC=C(N2CCN(CC2)CC3=C(CC(C)(CC3)C)C4=CC=C(Cl)C=C4)C=C1OC5=CC6=C(NC=C6)N=C5)NS(=O)(C7=CC=C(C([N+]([O-])=O)=C7)NCC8CCOCC8)=O
Relative Density.1.340 g/cm3 (Predicted)
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
Solubility Information
H2O: < 1 mg/mL (insoluble or slightly soluble)
Ethanol: < 1 mg/mL (insoluble or slightly soluble)
DMSO: 100 mg/mL (115.15 mM)
Solution Preparation Table
DMSO
1mg5mg10mg50mg
1 mM1.1515 mL5.7575 mL11.5149 mL57.5745 mL
5 mM0.2303 mL1.1515 mL2.3030 mL11.5149 mL
10 mM0.1151 mL0.5757 mL1.1515 mL5.7575 mL
20 mM0.0576 mL0.2879 mL0.5757 mL2.8787 mL
50 mM0.0230 mL0.1151 mL0.2303 mL1.1515 mL
100 mM0.0115 mL0.0576 mL0.1151 mL0.5757 mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
TargetMol | Animal experimentsFor example, your dosage is 10 mg/kg Each animal weighs 20 g, and the dosage volume is 100 μL . TargetMol | Animal experiments A total of 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL。
Mother liquor preparation method: 2 mg of drug dissolved in 50 μL DMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μL DMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μL Tween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify
For Reference Only. Please develop an appropriate dissolution method based on your laboratory animals and route of administration.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More Dose Conversion

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc

Keywords

Related Tags: buy Venetoclax | purchase Venetoclax | Venetoclax cost | order Venetoclax | Venetoclax chemical structure | Venetoclax in vivo | Venetoclax in vitro | Venetoclax formula | Venetoclax molecular weight