Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • Apoptosis
    (3)
  • Autophagy
    (1)
  • DNA/RNA Synthesis
    (3)
  • DUB
    (2)
  • P450
    (1)
  • Reactive Oxygen Species
    (1)
  • Topoisomerase
    (1)
  • Others
    (3)
TargetMol | Tags By Tag
  • C-Myc
    (1)
  • GST
    (1)
  • His
    (1)
  • N-10xHis
    (1)
  • N-6xHis
    (1)
  • N-His
    (2)
TargetMol | Tags By Expression System
  • Baculovirus Insect Cells
    (2)
  • E. coli
    (3)
TargetMol | Tags By Species
  • Human
    (5)
Filter
Search Result
Results for "pcna" in TargetMol Product Catalog
  • Inhibitor Products
    11
    TargetMol | Activity
  • Recombinant Protein
    5
    TargetMol | inventory
  • Natural Products
    2
    TargetMol | natural
  • Isotope products
    2
    TargetMol | composition
TargetMolTargetMolCompare
PCNA Protein, Human, Recombinant (His)
TMPY-02543
Proliferating Cell Nuclear Antigen (PCNA) is a protein only expressed in normal proliferate cells and cancer cells. It is central to both DNA replication and repair. One of the well-established functions for PCNA is its role as the processivity factor for DNA polymerase delta and epsilon. PCNA tethers the polymerase catalytic unit to the DNA template for rapid and processive DNA synthesis. Two forms of PCNA exist in cells: (i) a detergent-insoluble trimeric form stably associated with the replicating forks during S phase and (ii) a soluble form in quiescent cells in G1 and G2 phases. PCNA forms a toroidal trimer in S phase with replication factor-C (RF-C) and DNA in an ATP-dependent manner and enables the loading of DNA polymerase delta and epsilon onto the complex. The close association of PCNA with kinase complexes involved in cell cycle machinery indicates that PCNA has a regulatory role in cell cycle progression. PCNA also participates in the processing of branched intermediates that arise during the lagging strand DNA synthesis.
  • $700
In Stock
Size
QTY
TargetMolTargetMolCompare
KIAA0101 Protein, Human, Recombinant (His)
TMPY-02796
KIAA11, also known as p15(PAF), is a proliferating cell nuclear antigen-associated factor that interacts with proliferating cell nuclear antigen(PCNA). It was initially isolated in a yeast two-hybrid screen for PCNA binding partners and was shown to bind PCNA competitively with the cell cycle regulator p21(WAF). KIAA11 is localized primarily in the nucleus. It shares the conserved PCNA binding motif with several other PCNA binding proteins including CDK inhibitor p21. KIAA11 is involved in cell proliferation and plays a role in early tumor recurrence (ETR), and prognosis of hepatocellular carcinoma (HCC). KIAA11 is expressed predominantly in the liver, pancreas, and placenta. It cannot be detected in the heart or brain. It is highly expressed in some tumors, especially esophageal tumors, in anaplastic thyroid carcinomas, and non-small-cell lung cancer lines. Overexpression of KIAA11 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. It also may be involved in the protection of cells from UV-induced cell death.
  • $600
7-10 days
Size
QTY
TargetMolTargetMolCompare
RNF13 Protein, Human, Recombinant (His & Myc)
TMPH-01267
E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the 'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites. Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys-63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non-histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys-63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'-linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'-linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Following DNA damage, mediates the ubiquitination and degradation of POLD4/p12, a subunit of DNA polymerase delta. In the absence of POLD4, DNA polymerase delta complex exhibits higher proofreading activity. In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggravating telomere-induced genome instability in case of telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2.
  • $237
20 days
Size
QTY
TargetMolTargetMolCompare
GADD45A Protein, Human, Recombinant (His)
TMPJ-00907
Growth Arrest and DNA Damage-Inducible Protein GADD45 α (GADD45A) is a member of the GADD45 family. GADD45A can be induced by UV irradiation, X-rays, growth arrest and alkylating agents, of which can be mediated by some kinases other than PKC. GADD45A can interact with MAPK14, GADD45GIP1, PCNA. In T-cells, GADD45A functions as a regulator of p38 MAPKs by inhibiting p88 phosphorylation and activity. GADD45A may affect PCNA interaction with some cell division protein kinase complexes, stimulating DNA excision repair in vitro and inhibits entry of cells into S phase.
  • $184
7-10 days
Size
QTY
TargetMolTargetMolCompare
GADD45A Protein, Human, Recombinant (His & GST)
TMPY-02150
GADD45A is a member of the GADD45 Family, and has been found to associate with several cytoplasmic and nuclear factors and has been implicated in several cellular functions, including MAPK signaling, cell cycle regulation, DNA repair and genomic stability, apoptosis, and immune responses. The GADD45 Family of genes is rapidly induced by different stressors, including differentiation-inducing cytokines, and there is a large body of evidence that their cognate proteins are key players in cellular stress responses. GADD45A protein has been reported to interact with multiple important cellular proteins, including Cdc2 protein kinase, proliferating cell nuclear antigen (PCNA), p21Waf1/Cip1 protein, core histone protein and MTK/MEKK4, an up-stream activator of the JNK/SAPK pathway, indicating that GADD45A may play important roles in the control of cell cycle checkpoint, DNA repair process, and signaling transduction. GADD45A expression in response to genotoxic stress illustrates a more complex scenario, wherein transcriptional changes operate in concert with mRNA turnover and translational regulation. GADD45A was the first stress-inducible gene determined to be up-regulated by p53 and is also a target for the p53 homologues, p63 and p73. The decreased GADD45A expression is also considered a survival mechanism, as cancer cells without this control can evade the apoptotic pathway leading to increased tumourigenesis. As GADD45A is an essential component of many metabolic pathways that control proliferating cancer cells, it presents itself as an emerging drug target worthy of further investigation.
  • $700
7-10 days
Size
QTY