Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • DNA-PK
    (3)
  • DNA/RNA Synthesis
    (2)
  • PARP
    (2)
  • Others
    (14)
TargetMol | Tags By Tag
  • C-6xHis
    (1)
  • C-Myc
    (3)
  • C-His
    (1)
  • N-10xHis
    (3)
  • N-6xHis
    (1)
  • N-6xHis-SUMO
    (1)
  • N-MBP
    (1)
TargetMol | Tags By Expression System
  • Baculovirus Insect Cells
    (2)
  • E. coli
    (5)
TargetMol | Tags By Species
  • E. coli
    (1)
  • Human
    (5)
  • Saccharomyces cerevisiae
    (1)
Filter
Search Result
Results for "

dna break

" in TargetMol Product Catalog
  • Inhibitors & Agonists
    15
    TargetMol | Activity
  • Natural Products
    1
    TargetMol | inventory
  • Recombinant Protein
    7
    TargetMol | natural
  • Isotope Products
    2
    TargetMol | composition
TargetMolTargetMolCompare
XRCC5 Protein, Human, Recombinant (His & Myc)
TMPH-02315
Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA. Required for double-strand break repair and V(D)J recombination. Also has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3'-5' direction. During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection. Binding to DNA may be mediated by XRCC6. The XRCC5-XRRC6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold. The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together. The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step. The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks. XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined. The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription. In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression. As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome. Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway.
  • $198
20 days
Size
QTY
TargetMolTargetMolCompare
XRCC5 Protein, Human, Recombinant (His & MBP)
TMPH-02314
Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA. Required for double-strand break repair and V(D)J recombination. Also has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3'-5' direction. During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection. Binding to DNA may be mediated by XRCC6. The XRCC5-XRRC6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold. The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together. The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step. The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks. XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined. The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription. In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression. As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome. Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway.
  • $491
20 days
Size
QTY
TargetMolTargetMolCompare
NEIL1 Protein, Human, Recombinant (His)
TMPY-02798
NEIL1 is a member of DNA glycosylases. DNA glycosylases are a family homologous to the bacterial Fpg/Nei family. They play a role in base excision repair which is the mechanism by which damaged bases in DNA are removed and replaced. The first step of this process is catalyzed by DNA glycosylases. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site. NEIL1 functions in base excision repair of DNA damaged by oxidation or by mutagenic agents. It acts as a DNA glycosylase that recognizes and removes damaged bases. NEIL1 prefers to oxidized pyrimidines, such as thymine glycol, Formamidopyrimidine (Fapy), and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. It has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand and cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates.
  • $600
7-10 days
Size
QTY
TargetMolTargetMolCompare
TOP1 Protein, Human, Recombinant (His & Myc)
TMPH-01241
Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component ARNTL/BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the ARNTL/BMAL1 promoter.
  • $491
20 days
Size
QTY
TargetMolTargetMolCompare
HELQ Protein, Human, Recombinant (His & Myc)
TMPH-01431
Single-stranded DNA-dependent ATPase and 5' to 3' DNA helicase. Involved in the repair of DNA cross-links and double-strand break (DSB) resistance. Participates in FANCD2-mediated repair. Forms a complex with POLN polymerase that participates in homologous recombination (HR) repair and is essential for cellular protection against DNA cross-links. HELQ Protein, Human, Recombinant (His & Myc) is expressed in E. coli expression system with N-10xHis and C-Myc tag. The predicted molecular weight is 49.8 kDa and the accession number is Q8TDG4.
  • $284
20 days
Size
QTY
TargetMolTargetMolCompare
RAD52 Protein, S. cerevisiae, Recombinant (His & SUMO)
TMPH-03440
Involved in DNA double-strand break (DSB) repair and recombination. Promotes the annealing of complementary single-stranded DNA and by stimulation of the RAD51 recombinase. RAD52 Protein, S. cerevisiae, Recombinant (His & SUMO) is expressed in E. coli expression system with N-6xHis-SUMO tag. The predicted molecular weight is 41.1 kDa and the accession number is P06778.
  • $360
20 days
Size
QTY
TargetMolTargetMolCompare
gyrA Protein, E. coli, Recombinant (His)
TMPH-00610
A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bacterial gyrases; at comparable concentrations E.coli gyrase introduces more supercoils faster than M.tuberculosis gyrase, while M.tuberculosis gyrase has higher decatenation than supercoiling activity compared to E.coli. E.coli makes 15% more negative supercoils in pBR322 plasmid DNA than S.typhimurium; the S.typhimurium GyrB subunit is toxic in E.coli, while the E.coli copy can be expressed in S.typhimurium even though the 2 subunits have 777/804 residues identical. The enzymatic differences between E.coli gyrase and topoisomerase IV are largely due to the GyrA C-terminal domain (approximately residues 524-841) and specifically the GyrA-box.; Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
  • $360
20 days
Size
QTY