Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • Apoptosis
    (1)
  • DNA/RNA Synthesis
    (2)
  • HSP
    (1)
  • PARP
    (3)
  • Others
    (17)
TargetMol | Tags By Tag
  • C-6xHis
    (1)
  • C-Myc
    (6)
  • GST
    (1)
  • C-6xHis
    (3)
  • His
    (1)
  • N-10xHis
    (6)
  • N-6xHis
    (3)
  • N-6xHis-SUMO
    (1)
  • N-MBP
    (1)
TargetMol | Tags By Expression System
  • Baculovirus Insect Cells
    (4)
  • E. coli
    (10)
  • P. pastoris (Yeast)
    (1)
TargetMol | Tags By Species
  • Enterobacteria phage T4
    (2)
  • Enterobacteria phage T7
    (2)
  • Human
    (10)
  • Mouse
    (1)
Filter
Search Result
Results for "

homologous recombination repair

" in TargetMol Product Catalog
  • Recombinant Protein
    15
    TargetMol | Activity
  • Inhibitor Products
    9
    TargetMol | inventory
TargetMolTargetMolCompare
Recombination and repair protein Protein, Enterobacteria phage T4, Recombinant (His)
TMPH-00528
Important in genetic recombination, DNA repair, and replication. Possesses pairing and strand-transfer activity. Interacts with dda and gene 32 proteins.
  • $360
20 days
Size
QTY
TargetMolTargetMolCompare
SSB Protein, Enterobacteria phage T7, Recombinant
TMPH-00532
Single-stranded DNA-binding protein that participates in viral DNA replication, formation of concatemers, recombination and repair of double-stranded breaks. Coats the lagging-strand ssDNA as the replication fork advances and stimulates the activities of viral DNA polymerase and primase/helicase. Coordinates simultaneous synthesis of leading- and lagging-strands. Together with DNA primase/helicase, promotes pairing of two homologous DNA molecules containing complementary single-stranded regions and mediates homologous DNA strand exchange. Promotes also the formation of joint molecules. Disrupts loops, hairpins and other secondary structures present on ssDNA to reduce and eliminate pausing of viral DNA polymerase at specific sites during elongation.
  • $560
20 days
Size
QTY
TargetMolTargetMolCompare
POLM Protein, Human, Recombinant (His & Myc)
TMPH-01245
Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. POLM Protein, Human, Recombinant (His & Myc) is expressed in Baculovirus insect cells with N-10xHis and C-Myc tag. The predicted molecular weight is 58.8 kDa and the accession number is Q9NP87.
  • $491
20 days
Size
QTY
TargetMolTargetMolCompare
FAN1 Protein, Mouse, Recombinant (His & Myc)
TMPH-02649
Nuclease required for the repair of DNA interstrand cross-links (ICL) recruited at sites of DNA damage by monoubiquitinated FANCD2. Specifically involved in repair of ICL-induced DNA breaks by being required for efficient homologous recombination, probably in the resolution of homologous recombination intermediates. Not involved in DNA double-strand breaks resection. Acts as a 5'-3' exonuclease that anchors at a cut end of DNA and cleaves DNA successively at every third nucleotide, allowing to excise an ICL from one strand through flanking incisions. Probably keeps excising with 3'-flap annealing until it reaches and unhooks the ICL. Acts at sites that have a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap. Also has endonuclease activity toward 5'-flaps.
  • $284
20 days
Size
QTY
TargetMolTargetMolCompare
RNF13 Protein, Human, Recombinant (His & Myc)
TMPH-01267
E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the 'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites. Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys-63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non-histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys-63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'-linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'-linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Following DNA damage, mediates the ubiquitination and degradation of POLD4/p12, a subunit of DNA polymerase delta. In the absence of POLD4, DNA polymerase delta complex exhibits higher proofreading activity. In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggravating telomere-induced genome instability in case of telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2.
  • $237
20 days
Size
QTY
TargetMolTargetMolCompare
POLQ Protein, Human, Recombinant (His)
TMPH-01238
DNA polymerase that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery triggered in response to double-strand breaks in DNA. MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation. POLQ acts as an inhibitor of homology-recombination repair (HR) pathway by limiting RAD51 accumulation at resected ends. POLQ-mediated MMEJ may be required to promote the survival of cells with a compromised HR repair pathway, thereby preventing genomic havoc by resolving unrepaired lesions. The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs. It then extends each strand from the base-paired region using the opposing overhang as a template. Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ. The polymerase activity is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates. Also exhibits low-fidelity DNA synthesis, translesion synthesis and lyase activity, and it is implicated in interstrand-cross-link repair, base excision repair and DNA end-joining. Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs.
  • $491
20 days
Size
QTY
TargetMolTargetMolCompare
MSH2 Protein, Human, Recombinant (His & GST)
TMPY-04267
MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines the DNA damage response.MSH2 is a central component of the mismatch repair pathway that targets mismatches arising during DNA replication, homologous recombination (HR), and in response to genotoxic stresses.MSH2 rearrangements are involved in approximately 10% of hereditary non-polyposis colorectal cancer (HNPCC) families, and in most of the rearrangements, exon 1 is deleted. Loss of human MSH2 (hMSH2) protein might be involved in the multistep pathogenesis of hematological malignancies associated with genetic instability.
  • $700
7-10 days
Size
QTY
TargetMolTargetMolCompare
SWSAP1 Protein, Human, Recombinant (His)
TMPJ-01179
SWSAP1 is a nucleus ATPase protein, interacts with ZSWIM7 and forms a functional complex. The complexs involved in homologous recombination repair and stabilizes each other. SWS1AP1 also interacts with RAD51, RAD51B, RAD51C, RAD51D and XRCC3. It involves in homologous recombination repair. ATPase is preferentially stimulated by single-stranded DNA and is involved in homologous recombination repair (HRR). SWSAP1 has a DNA-binding activity which is independent of its ATPase activity.
  • $184
7-10 days
Size
QTY
TargetMolTargetMolCompare
POLQ Protein, Human, Recombinant (E. coli, His)
TMPH-01237
DNA polymerase that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery triggered in response to double-strand breaks in DNA. MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation. POLQ acts as an inhibitor of homology-recombination repair (HR) pathway by limiting RAD51 accumulation at resected ends. POLQ-mediated MMEJ may be required to promote the survival of cells with a compromised HR repair pathway, thereby preventing genomic havoc by resolving unrepaired lesions. The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs. It then extends each strand from the base-paired region using the opposing overhang as a template. Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ. The polymerase activity is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates. Also exhibits low-fidelity DNA synthesis, translesion synthesis and lyase activity, and it is implicated in interstrand-cross-link repair, base excision repair and DNA end-joining. Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs.
  • $284
20 days
Size
QTY
TargetMolTargetMolCompare
HELQ Protein, Human, Recombinant (His & Myc)
TMPH-01431
Single-stranded DNA-dependent ATPase and 5' to 3' DNA helicase. Involved in the repair of DNA cross-links and double-strand break (DSB) resistance. Participates in FANCD2-mediated repair. Forms a complex with POLN polymerase that participates in homologous recombination (HR) repair and is essential for cellular protection against DNA cross-links. HELQ Protein, Human, Recombinant (His & Myc) is expressed in E. coli expression system with N-10xHis and C-Myc tag. The predicted molecular weight is 49.8 kDa and the accession number is Q8TDG4.
  • $284
20 days
Size
QTY
TargetMolTargetMolCompare
XRCC5 Protein, Human, Recombinant (His & MBP)
TMPH-02314
Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA. Required for double-strand break repair and V(D)J recombination. Also has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3'-5' direction. During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection. Binding to DNA may be mediated by XRCC6. The XRCC5-XRRC6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold. The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together. The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step. The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks. XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined. The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription. In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression. As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome. Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway.
  • $491
20 days
Size
QTY
TargetMolTargetMolCompare
SSB Protein, Enterobacteria phage T4, Recombinant (His & Myc)
TMPH-00530
Single-stranded DNA-binding protein that participates in viral DNA replication, recombination, and repair (Probable). Coats the lagging-strand ssDNA as the replication fork advances. Stimulates the activities of viral DNA polymerase and DnaB-like SF4 replicative helicase, probably via its interaction with the helicase assembly factor. Together with DnaB-like SF4 replicative helicase and the helicase assembly factor, promotes pairing of two homologous DNA molecules containing complementary single-stranded regions and mediates homologous DNA strand exchange. Promotes also the formation of joint molecules. mRNA specific autogenous translational repressor.
  • $360
20 days
Size
QTY
TargetMolTargetMolCompare
XRCC5 Protein, Human, Recombinant (His & Myc)
TMPH-02315
Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA. Required for double-strand break repair and V(D)J recombination. Also has a role in chromosome translocation. The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner. It works in the 3'-5' direction. During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection. Binding to DNA may be mediated by XRCC6. The XRCC5-XRRC6 dimer acts as regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold. The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together. The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step. The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks. XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined. The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription. In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression. As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome. Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway.
  • $198
20 days
Size
QTY
TargetMolTargetMolCompare
POLM Protein, Human, Recombinant (His)
TMPH-01244
Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. POLM Protein, Human, Recombinant (His) is expressed in E. coli expression system with N-6xHis tag. The predicted molecular weight is 58.8 kDa and the accession number is Q9NP87.
  • $284
20 days
Size
QTY
TargetMolTargetMolCompare
SSB Protein, Enterobacteria phage T7, Recombinant (His & SUMO)
TMPH-00531
Single-stranded DNA-binding protein that participates in viral DNA replication, formation of concatemers, recombination and repair of double-stranded breaks. Coats the lagging-strand ssDNA as the replication fork advances and stimulates the activities of viral DNA polymerase and primase/helicase. Coordinates simultaneous synthesis of leading- and lagging-strands. Together with DNA primase/helicase, promotes pairing of two homologous DNA molecules containing complementary single-stranded regions and mediates homologous DNA strand exchange. Promotes also the formation of joint molecules. Disrupts loops, hairpins and other secondary structures present on ssDNA to reduce and eliminate pausing of viral DNA polymerase at specific sites during elongation.
  • $360
20 days
Size
QTY