Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • Apoptosis
    (5)
  • Autophagy
    (2)
  • BCL
    (1)
  • CDK
    (18)
  • ERK
    (2)
  • GSK-3
    (5)
  • JAK
    (2)
  • PKA
    (2)
  • PKC
    (2)
  • Others
    (12)
TargetMol | Tags By Tag
  • GST
    (2)
  • C-His
    (1)
  • His
    (2)
  • N-6xHis
    (1)
  • N-6xHis-SUMO
    (1)
  • N-GST
    (1)
  • N-His
    (1)
  • N-His-Avi
    (2)
TargetMol | Tags By Expression System
  • Baculovirus Insect Cells
    (3)
  • E. coli
    (5)
  • HEK293 Cells
    (1)
TargetMol | Tags By Species
  • Goat
    (2)
  • Human
    (7)
  • Mouse
    (4)
Filter
Search Result
Results for "

cyclin e

" in TargetMol Product Catalog
  • Inhibitor Products
    30
    TargetMol | Activity
  • Recombinant Protein
    9
    TargetMol | inventory
  • Natural Products
    2
    TargetMol | natural
  • PROTAC Products
    1
    TargetMol | composition
TargetMolTargetMolCompare
Cyclin E Protein, Human, Recombinant (His & GST)
TMPY-02777
Cyclin E Protein, Human, Recombinant (His & GST) is expressed in Baculovirus insect cells with His and GST tag. The predicted molecular weight is 75 kDa and the accession number is P24864-1.
  • $700
7-10 days
Size
QTY
TargetMolTargetMolCompare
Cyclin E Protein, Mouse, Recombinant (His & GST)
TMPY-03535
Cyclin E Protein, Mouse, Recombinant (His & GST) is expressed in Baculovirus insect cells with His and GST tag. The predicted molecular weight is 74.8 kDa and the accession number is AAH62152.1.
  • $700
7-10 days
Size
QTY
TargetMolTargetMolCompare
CDKN1B Protein, Human, Recombinant (His)
TMPJ-00972
Cyclin-Dependent Kinase Inhibitor 1B (CDKN1B) is a Kinesin-related motor protein necessary for mitotic spindle assembly and chromosome segregation. CDKN1B is expressed in all tissues with highest levels observed in skeletal muscle. CDKN1B is a potent inhibitor of Cyclin E- and Cyclin A-CDK2 complexes. CDKN1B forms a complex with Cyclin Type D-CDK4 complexes and is involved in the assembly, stability, and modulation of CCND1-CDK4 complex activation. In addition, CDKN1B acts as an inhibitor or an activator of Cyclin Type D-CDK4 complexes depending on its phosphorylation state and stoichometry.
  • $184
7-10 days
Size
QTY
TargetMolTargetMolCompare
CDK2 Protein, Human, Recombinant (His)
TMPY-04542
CDK2 is a member of the Ser/Thr protein kinase family. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2. It is a catalytic subunit of the cyclin-dependent protein kinase complex, whose activity is restricted to the G1-S phase, and essential for cell cycle G1/S phase transition. Cdks (cyclin-dependent kinases) are heteromeric serine/threonine kinases that control progression through the cell cycle in concert with their regulatory subunits, the cyclins. Cdks are constitutively expressed and are regulated by several kinases and phosphastases, including Wee1, CDK-activating kinase and Cdc25 phosphatase. Although there are 12 different cdk genes, only 5 have been shown to directly drive the cell cycle (Cdk1, -2, -3, -4, and -6). Following extracellular mitogenic stimuli, cyclin D gene expression is upregulated. Cdk4 forms a complex with cyclin D and phosphorylates Rb protein, leading to liberation of the transcription factor E2F. E2F induces transcription of genes including cyclins A and E, DNA polymerase and thymidine kinase. Cdk4-cyclin E complexes form and initiate G1/S transition. Subsequently, Cdk1-cyclin B complexes form and induce G2/M phase transition. Cdk1-cyclin B activation induces the breakdown of the nuclear envelope and the initiation of mitosis. CDK2 associates with and regulated by the regulatory subunits of the complex including cyclin A or E, CDK inhibitor p21Cip1 (CDKN1A) and p27Kip1 (CDKN1B). Its activity is also regulated by its protein phosphorylation. CDK2 is involved in the control of the cell cycle. It also interacts with cyclins A, B1, B3, D, or E. Activity of CDK2 is maximal during S phase and G2.
  • $498
7-10 days
Size
QTY
TargetMolTargetMolCompare
PRKN Protein, Human, Recombinant (His & SUMO)
TMPH-01263
Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins. Substrates include SYT11 and VDAC1. Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2. Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation. Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation. Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy. Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components. Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy. Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin. After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis. When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30. Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy. The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2. This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes. Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma. Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A. Limits the production of reactive oxygen species (ROS). Regulates cyclin-E during neuronal apoptosis. In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress. Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53. May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity. May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene.
  • $198
20 days
Size
QTY
TargetMolTargetMolCompare
Cpn10/HSPE1 Protein, Human/Mouse/Goat, Recombinant (His & Avi)
TMPK-00015
Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei.Cpn10 is important for S phase progression and cell proliferation. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription. Cpn10/HSPE1 Protein, Human/Mouse/Goat, Recombinant (His & Avi) is expressed in E. coli expression system with N-His-Avi tag. The predicted molecular weight is 13.70 kDa and the accession number is A0A384N6A4.
  • $487
7-10 days
Size
QTY
TargetMolTargetMolCompare
Cpn10/HSPE1 Protein, Human/Mouse/Goat, Recombinant (His & Avi), Biotinylated
TMPK-00016
Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei.Cpn10 is important for S phase progression and cell proliferation. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription. Cpn10/HSPE1 Protein, Human/Mouse/Goat, Recombinant (His & Avi), Biotinylated is expressed in E. coli expression system with N-His-Avi tag. The predicted molecular weight is 13.70 kDa and the accession number is A0A384N6A4.
  • $814
7-10 days
Size
QTY
TargetMolTargetMolCompare
RPRD1B Protein, Human, Recombinant (His)
TMPY-03599
RPRD1B, together with RPRD1A, can accompany RNAP II from promoter regions to 3'-untranslated regions during transcription in vivo, predominantly interact with phosphorylated RNAP II, and can reduce CTD S5- and S7-phosphorylated RNAP II at target gene promoters. RNA polymerase II C-terminal domain (CTD) phosphorylation is important for various transcription-related processes. RPRD1B is a transcriptional regulator that enhances expression of CCND1. It also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A.
  • $700
7-10 days
Size
QTY
TargetMolTargetMolCompare
PRKN Protein, Mouse, Recombinant (GST)
TMPH-02631
Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins. Substrates include SYT11 and VDAC1. Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2. Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context. Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation. Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation. Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy. Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components. Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy. Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin. After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis. When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30. Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy. The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2. This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes. Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma. Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A. Limits the production of reactive oxygen species (ROS). Regulates cyclin-E during neuronal apoptosis. In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress. Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53. May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity. May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene.
  • $360
20 days
Size
QTY