Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryJapanJapan
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • AChR
    (1)
  • ATPase
    (1)
  • Aminopeptidase
    (1)
  • Antibacterial
    (1)
  • Antibiotic
    (1)
  • Calcium Channel
    (2)
  • Endogenous Metabolite
    (6)
  • Potassium Channel
    (4)
  • Sodium Channel
    (4)
  • Others
    (27)
TargetMol | Tags By Tag
  • C-Myc
    (1)
  • C-hFC
    (1)
  • C-hFc
    (1)
  • N-10xHis
    (1)
  • N-6xHis
    (1)
  • N-GST
    (1)
TargetMol | Tags By Expression System
  • E. coli
    (3)
  • HEK293 Cells
    (1)
  • P. pastoris (Yeast)
    (1)
TargetMol | Tags By Species
  • Human
    (5)
Filter
Search Result
Results for "

acid-sensitive

" in TargetMol Product Catalog
  • Inhibitors & Agonists
    42
    TargetMol | Activity
  • Peptide Products
    5
    TargetMol | inventory
  • Dye Reagents
    6
    TargetMol | natural
  • Natural Products
    14
    TargetMol | composition
  • Reagent Kits
    1
    TargetMol | Activity
  • Recombinant Protein
    5
    TargetMol | inventory
  • Isotope Products
    1
    TargetMol | natural
TargetMolTargetMolCompare
KCNK3 Protein, Human, Recombinant (His & Myc)
TMPH-01889
pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. KCNK3 Protein, Human, Recombinant (His & Myc) is expressed in E. coli expression system with N-10xHis and C-Myc tag. The predicted molecular weight is 50.5 kDa and the accession number is O14649.
  • $1,980
20 days
Size
QTY
TargetMolTargetMolCompare
FABP3 Protein, Human, Recombinant (His)
TMPJ-00785
Fatty Acid Binding Protein 3 (FABP3) is a small cytoplasmic protein (15 kDa) that is released from cardiac myocytes following an ischemic episode. Like the nine other distinct FABPs that have been identified, FABP3 is involved in active fatty acid metabolism where it transports fatty acids from the cell membrane to mitochondria for oxidation. FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-types. They form 14-15 kDa proteins and are thought to participate in the uptake, intracellular metabolism and/or transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth and proliferation. The FABP3 gene contains four exons and its function is to arrest growth of mammary epithelial cells. This gene is also a candidate tumor suppressor gene for human breast cancer. FABP3 is a sensitive biomarker for myocardial infarction and can be detected in the blood within one to three hours of onset of pain.
  • $129
7-10 days
Size
QTY
TargetMolTargetMolCompare
Humanin Protein, Human, Recombinant (hFc)
TMPH-01503
Plays a role as a neuroprotective factor. Protects against neuronal cell death induced by multiple different familial Alzheimer disease genes and amyloid-beta proteins in Alzheimer disease. Mediates its neuroprotective effect by interacting with a receptor complex composed of IL6ST/GP130, IL27RA/WSX1 and CNTFR. Also acts as a ligand for G-protein coupled receptors FPR2/FPRL1 and FPR3/FPRL2. Inhibits amyloid-beta protein 40 fibril formation. Also inhibits amyloid-beta protein 42 fibril formation. Suppresses apoptosis by binding to BAX and preventing the translocation of BAX from the cytosol to mitochondria. Also suppresses apoptosis by binding to BID and inhibiting the interaction of BID with BAX and BAK which prevents oligomerization of BAX and BAK and suppresses release of apoptogenic proteins from mitochondria. Forms fibers with BAX and also with BID, inducing BAX and BID conformational changes and sequestering them into the fibers which prevents their activation. Can also suppress apoptosis by interacting with BIM isoform BimEL, inhibiting BimEL-induced activation of BAX, blocking oligomerization of BAX and BAK, and preventing release of apoptogenic proteins from mitochondria. Plays a role in up-regulation of anti-apoptotic protein BIRC6/APOLLON, leading to inhibition of neuronal cell death. Binds to IGFBP3 and specifically blocks IGFBP3-induced cell death. Competes with importin KPNB1 for binding to IGFBP3 which is likely to block IGFBP3 nuclear import. Induces chemotaxis of mononuclear phagocytes via FPR2/FPRL1. Reduces aggregation and fibrillary formation by suppressing the effect of APP on mononuclear phagocytes and acts by competitively inhibiting the access of FPR2 to APP. Protects retinal pigment epithelium (RPE) cells against oxidative stress-induced and endoplasmic reticulum (ER) stress-induced apoptosis. Promotes mitochondrial biogenesis in RPE cells following oxidative stress and promotes STAT3 phosphorylation which leads to inhibition of CASP3 release. Also reduces CASP4 levels in RPE cells, suppresses ER stress-induced mitochondrial superoxide production and plays a role in up-regulation of mitochondrial glutathione. Reduces testicular hormone deprivation-induced apoptosis of germ cells at the nonandrogen-sensitive stages of the seminiferous epithelium cycle. Protects endothelial cells against free fatty acid-induced inflammation by suppressing oxidative stress, reducing expression of TXNIP and inhibiting activation of the NLRP3 inflammasome which inhibits expression of proinflammatory cytokines IL1B and IL18. Protects against high glucose-induced endothelial cell dysfunction by mediating activation of ERK5 which leads to increased expression of transcription factor KLF2 and prevents monocyte adhesion to endothelial cells. Inhibits the inflammatory response in astrocytes. Increases the expression of PPARGC1A/PGC1A in pancreatic beta cells which promotes mitochondrial biogenesis. Increases insulin sensitivity.
  • $614
20 days
Size
QTY
TargetMolTargetMolCompare
Humanin Protein, Human, Recombinant (GST)
TMPH-01502
Plays a role as a neuroprotective factor. Protects against neuronal cell death induced by multiple different familial Alzheimer disease genes and amyloid-beta proteins in Alzheimer disease. Mediates its neuroprotective effect by interacting with a receptor complex composed of IL6ST/GP130, IL27RA/WSX1 and CNTFR. Also acts as a ligand for G-protein coupled receptors FPR2/FPRL1 and FPR3/FPRL2. Inhibits amyloid-beta protein 40 fibril formation. Also inhibits amyloid-beta protein 42 fibril formation. Suppresses apoptosis by binding to BAX and preventing the translocation of BAX from the cytosol to mitochondria. Also suppresses apoptosis by binding to BID and inhibiting the interaction of BID with BAX and BAK which prevents oligomerization of BAX and BAK and suppresses release of apoptogenic proteins from mitochondria. Forms fibers with BAX and also with BID, inducing BAX and BID conformational changes and sequestering them into the fibers which prevents their activation. Can also suppress apoptosis by interacting with BIM isoform BimEL, inhibiting BimEL-induced activation of BAX, blocking oligomerization of BAX and BAK, and preventing release of apoptogenic proteins from mitochondria. Plays a role in up-regulation of anti-apoptotic protein BIRC6/APOLLON, leading to inhibition of neuronal cell death. Binds to IGFBP3 and specifically blocks IGFBP3-induced cell death. Competes with importin KPNB1 for binding to IGFBP3 which is likely to block IGFBP3 nuclear import. Induces chemotaxis of mononuclear phagocytes via FPR2/FPRL1. Reduces aggregation and fibrillary formation by suppressing the effect of APP on mononuclear phagocytes and acts by competitively inhibiting the access of FPR2 to APP. Protects retinal pigment epithelium (RPE) cells against oxidative stress-induced and endoplasmic reticulum (ER) stress-induced apoptosis. Promotes mitochondrial biogenesis in RPE cells following oxidative stress and promotes STAT3 phosphorylation which leads to inhibition of CASP3 release. Also reduces CASP4 levels in RPE cells, suppresses ER stress-induced mitochondrial superoxide production and plays a role in up-regulation of mitochondrial glutathione. Reduces testicular hormone deprivation-induced apoptosis of germ cells at the nonandrogen-sensitive stages of the seminiferous epithelium cycle. Protects endothelial cells against free fatty acid-induced inflammation by suppressing oxidative stress, reducing expression of TXNIP and inhibiting activation of the NLRP3 inflammasome which inhibits expression of proinflammatory cytokines IL1B and IL18. Protects against high glucose-induced endothelial cell dysfunction by mediating activation of ERK5 which leads to increased expression of transcription factor KLF2 and prevents monocyte adhesion to endothelial cells. Inhibits the inflammatory response in astrocytes. Increases the expression of PPARGC1A/PGC1A in pancreatic beta cells which promotes mitochondrial biogenesis. Increases insulin sensitivity.
  • $360
20 days
Size
QTY
TargetMolTargetMolCompare
GPR84 Protein, Human, Recombinant (hFc)
TMPH-01410
Receptor for medium-chain free fatty acid (FFA) with carbon chain lengths of C9 to C14. Capric acid (C10:0), undecanoic acid (C11:0) and lauric acid (C12:0) are the most potent agonists. Not activated by short-chain and long-chain saturated and unsaturated FFAs. Activation by medium-chain free fatty acid is coupled to a pertussis toxin sensitive G(i/o) protein pathway. May have important roles in processes from fatty acid metabolism to regulation of the immune system. GPR84 Protein, Human, Recombinant (hFc) is expressed in yeast with C-hFc tag. The predicted molecular weight is 31.2 kDa and the accession number is Q9NQS5.
  • $341
20 days
Size
QTY